PV227 GPU Rendering

Marek Vinkler

Department of Computer Graphics and Design

Laboratory

PV227 GPU Rendering

N
Points and Vectors

@ points (before projection) are quadruples: (x,y, z,1.0),
@ can be transformed with a 4 x 4 matrix,

@ vectors are also quadruples: (x, y, z,0.0),
e can be transformed with a 4 x 4 or 3 x 3 matrix.

Ene

Laboratory

PV227 GPU Rendering 2/23

Transformation

@ points are transformed to eye space with modelview
matrix,

@ vectors constructed from points (e.g. P> — P¢) are also
transformed with this matrix,

@ normals are not!

Laboratory

PV227 GPU Rendering 3/23

Normal Transformation Error

x Kk

Figure: Taken from lighthouse3d.com

Laboratory

PV227 GPU Rendering 4/23

http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-spaces-and-matrices/

Normal Transformation Solution

@ caused by non-uniform scale,

@ M is the modelview matrix, f is tangent vector (P, — P;)
and / is identity,

@ we need another matrix (N) for transforming normal 7.

(M x t) e (N x

)
(M x£)T x (N x i)
tTx M"T x N x

0
0
0

Laboratory

PV227 GPU Rendering 5/23

-
Normal Transformation Solution (cont.)

TxM xNxi=0

feri=0=1 xi=0=MT xN=1

MT x N =1
MDYV MT x N=(MT)™
N = (MT)—1

Ene

Laboratory

PV227 GPU Rendering 6/23

N
Normal Transformation Result

@ N is inverse transpose of M (3 x 3 submatrix of M),
@ for orthogonal matrices: AT = A~ (rotation is orthogonal),
@ Mis orthogonal M = (MT)~™" = N = M.

Laboratory

PV227 GPU Rendering 7/23

Renormalization

@ normals must be of unit length,

@ can be destroyed by normal transformation — must be
normalized in vertex shader,

@ interpolation can also destroy vector length — must be
normalized in fragment shader.

1/2

12

Figure: Taken from lighthouse3d.com

Ene

Laboratory

PV227 GPU Rendering 8/23

http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-interpolation-issues/

-
Lighting

@ computation of light’s interaction with surfaces,
@ huge cheat,

@ ambient, diffuse and specular lighting,

@ flat, gouraud and phong shading,

@ directional, point and spot light,

@ no shadow, no bouncing of light.

Laboratory

PV227 GPU Rendering 9/23

Ambient Lighting
@ approximates lighting after infinite number of bounces,
homogeneous,
prevents black areas that look unnatural,
usually chosen as fraction of the diffuse (material) color,

/ - ,<é.

Figure: Ambient spheres

Laboratory

PV227 GPU Rendering

10/23

-
Directional Light

N

Figure: Taken from lighthouse3d.com

@ far away light,
@ defined by a direction vector (position is irelevant),
@ can represent e.g. the sun.

Laboratory

PV227 GPU Rendering 11/23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg

-
Gouraud Shading

@ per vertex shading,
@ interpolation of vertex colors,
@ unable to capture lighting details inside polygons.

Laboratory

PV227 GPU Rendering 12/23

Diffuse Lighting

@ simulate light’s interaction with perfectly diffuse material,
@ light angle dependent,

@ significant color component,

@ /=cos(a) - Ky.

Figure: Diffuse spheres I

Laboratory

PV227 GPU Rendering 13/23

Diffuse Lighting

Figure: Taken from lighthouse3d.com

@ amount of incoming light diminishes with increasing angle,

LeN
@ cos(a) = |Z\T|N|’

@ normalized vectors: | = (L e N) - Ky,

@ all vectors must be in same space (usually defined in
world space, computation in camera space). I.I I

Laboratory

PV227 GPU Rendering 14/23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/lambert.jpg

Flat Shading
@ per primitive shading,
@ no interpolation,
@ unable to capture smooth changes in light intensity.

R e diii—————c

Figure: Flat shading “cl

Laboratory

PV227 GPU Rendering 15/23

-
Combined Lighting

@ light from various sources can be combined (added),

@ combination of ambient and diffuse prevents black areas,
@ /= Ky +cos(a) - Ky,

@ value should not be outside the [0.0, 1.0] range.

Figure: Ambient + Diffuse spheres I

Laboratory

PV227 GPU Rendering 16/23

Specular Lighting

@ simulate light’s interaction with reflective material,
@ view angle dependent,

@ highlight of the light’s color, not material color,

@ /| =cos(B)® - Ks, s controls size of the highlight.

Figure: Specular spheres (Phong vs Blinn-Phong) I

Laboratory

PV227 GPU Rendering 17/23

Phong Lighting

N

L R
24 1
d=|L|cos(ax) ! !

Eye N
e

Figure: Taken from lighthouse3d.com

@ amount of reflected light diminishes with increasing angle,

@ R=—L+2-(Nel)-N,

@ cos(3) = Re Eye,

@ all vectors must be in same space, normalized. "cl

Laboratory

PV227 GPU Rendering 18/23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg

-
Blinn-Phong Lighting

Figure: Taken from lighthouse3d.com

@ amount of reflected light diminishes with increasing angle,

e H=L+ E;/e,

@ cos(8) = HeN,

@ all vectors must be in same space, normalized. I

Laboratory

PV227 GPU Rendering 19/23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg

.
Basic Lighting
@ ambient, diffuse and specular form the baseline lighting,
@ /= Ky+cos(a) - Ky + cos(B)® - Ks,
@ light from various sources can be combined (added),
@ value should not be outside the [0.0, 1.0] range.

Figure: Ambient + Diffuse + Specular pawns I

Laboratory

PV227 GPU Rendering 20/23

.
Phong Shading

@ per pixel shading,
@ smooth lighting including details,
@ interpolation of vertex attributes (normal, eye, light).

Figure: Per pixel lighting pawns “cl

Laboratory

PV227 GPU Rendering 21/23

-
Point Light

@ light source inside the scene,
@ defined by a position vector (all directions),
@ can represent e.g. a lightbulb.

LN

Figure: Taken from lighthouse3d.com Point light pawns. “cl

Laboratory

PV227 GPU Rendering 22/23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg

Spot Light
@ light source inside the scene,
@ only a directed cone is illuminated,
@ defined by a position vector, direction vector and angle,
@ can represent e.g. a flashlight.

7

Figure: Spot light pawns I

Laboratory

PV227 GPU Rendering 23/23

