
PV227 GPU Rendering

Marek Vinkler

Department of Computer Graphics and Design

PV227 GPU Rendering 1 / 23

Points and Vectors

points (before projection) are quadruples: (x , y , z,1.0),
can be transformed with a 4× 4 matrix,

vectors are also quadruples: (x , y , z,0.0),
can be transformed with a 4× 4 or 3× 3 matrix.

PV227 GPU Rendering 2 / 23

Transformation

points are transformed to eye space with modelview
matrix,
vectors constructed from points (e.g. P2 − P1) are also
transformed with this matrix,
normals are not!

PV227 GPU Rendering 3 / 23

Normal Transformation Error

Figure: Taken from lighthouse3d.com

PV227 GPU Rendering 4 / 23

http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-spaces-and-matrices/

Normal Transformation Solution

caused by non-uniform scale,
M is the modelview matrix,~t is tangent vector (P2 − P1)
and I is identity,
we need another matrix (N) for transforming normal ~n.

(M ×~t) • (N × ~n) = 0

(M ×~t)T × (N × ~n) = 0
~tT ×MT × N × ~n = 0

PV227 GPU Rendering 5 / 23

Normal Transformation Solution (cont.)

~tT ×MT × N × ~n = 0

~t • ~n = 0⇒~tT × ~n = 0⇒ MT × N = I

MT × N = I

(MT)−1 ×MT × N = (MT)−1

N = (MT)−1

PV227 GPU Rendering 6 / 23

Normal Transformation Result

N is inverse transpose of M (3× 3 submatrix of M),
for orthogonal matrices: AT = A−1 (rotation is orthogonal),
M is orthogonal M = (MT)−1 ⇒ N = M.

PV227 GPU Rendering 7 / 23

Renormalization

normals must be of unit length,
can be destroyed by normal transformation→ must be
normalized in vertex shader,
interpolation can also destroy vector length→ must be
normalized in fragment shader.

Figure: Taken from lighthouse3d.com

PV227 GPU Rendering 8 / 23

http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-interpolation-issues/

Lighting

computation of light’s interaction with surfaces,
huge cheat,
ambient, diffuse and specular lighting,
flat, gouraud and phong shading,
directional, point and spot light,
no shadow, no bouncing of light.

PV227 GPU Rendering 9 / 23

Ambient Lighting
approximates lighting after infinite number of bounces,
homogeneous,
prevents black areas that look unnatural,
usually chosen as fraction of the diffuse (material) color,
I = Ka.

Figure: Ambient spheres
PV227 GPU Rendering 10 / 23

Directional Light

Figure: Taken from lighthouse3d.com

far away light,
defined by a direction vector (position is irelevant),
can represent e.g. the sun.

PV227 GPU Rendering 11 / 23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg

Gouraud Shading

per vertex shading,
interpolation of vertex colors,
unable to capture lighting details inside polygons.

PV227 GPU Rendering 12 / 23

Diffuse Lighting
simulate light’s interaction with perfectly diffuse material,
light angle dependent,
significant color component,
I = cos(α) · Kd .

Figure: Diffuse spheres

PV227 GPU Rendering 13 / 23

Diffuse Lighting

Figure: Taken from lighthouse3d.com

amount of incoming light diminishes with increasing angle,

cos(α) = ~L•~N
|~L|·|~N| ,

normalized vectors: I = (~L • ~N) · Kd ,
all vectors must be in same space (usually defined in
world space, computation in camera space).

PV227 GPU Rendering 14 / 23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/lambert.jpg

Flat Shading
per primitive shading,
no interpolation,
unable to capture smooth changes in light intensity.

Figure: Flat shading

PV227 GPU Rendering 15 / 23

Combined Lighting
light from various sources can be combined (added),
combination of ambient and diffuse prevents black areas,
I = Ka + cos(α) · Kd ,
value should not be outside the [0.0,1.0] range.

Figure: Ambient + Diffuse spheres

PV227 GPU Rendering 16 / 23

Specular Lighting
simulate light’s interaction with reflective material,
view angle dependent,
highlight of the light’s color, not material color,
I = cos(β)s · Ks, s controls size of the highlight.

Figure: Specular spheres (Phong vs Blinn-Phong)

PV227 GPU Rendering 17 / 23

Phong Lighting

Figure: Taken from lighthouse3d.com

amount of reflected light diminishes with increasing angle,
~R = −~L + 2 · (~N • ~L) · ~N,

cos(β) = ~R • ~Eye,
all vectors must be in same space, normalized.

PV227 GPU Rendering 18 / 23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg

Blinn-Phong Lighting

Figure: Taken from lighthouse3d.com

amount of reflected light diminishes with increasing angle,
~H = ~L + ~Eye,
cos(β) = ~H • ~N,
all vectors must be in same space, normalized.

PV227 GPU Rendering 19 / 23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg

Basic Lighting
ambient, diffuse and specular form the baseline lighting,
I = Ka + cos(α) · Kd + cos(β)s · Ks,
light from various sources can be combined (added),
value should not be outside the [0.0,1.0] range.

Figure: Ambient + Diffuse + Specular pawns

PV227 GPU Rendering 20 / 23

Phong Shading
per pixel shading,
smooth lighting including details,
interpolation of vertex attributes (normal, eye, light).

Figure: Per pixel lighting pawns

PV227 GPU Rendering 21 / 23

Point Light
light source inside the scene,
defined by a position vector (all directions),
can represent e.g. a lightbulb.

Figure: Taken from lighthouse3d.com Point light pawns.

PV227 GPU Rendering 22 / 23

http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg

Spot Light
light source inside the scene,
only a directed cone is illuminated,
defined by a position vector, direction vector and angle,
can represent e.g. a flashlight.

Figure: Spot light pawns

PV227 GPU Rendering 23 / 23

