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Points and Vectors

points (before projection) are quadruples: (x , y , z,1.0),
can be transformed with a 4× 4 matrix,

vectors are also quadruples: (x , y , z,0.0),
can be transformed with a 4× 4 or 3× 3 matrix.
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Transformation

points are transformed to eye space with modelview
matrix,
vectors constructed from points (e.g. P2 − P1) are also
transformed with this matrix,
normals are not!
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Normal Transformation Error

Figure: Taken from lighthouse3d.com
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http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-spaces-and-matrices/


Normal Transformation Solution

caused by non-uniform scale,
M is the modelview matrix,~t is tangent vector (P2 − P1)
and I is identity,
we need another matrix (N) for transforming normal ~n.

(M ×~t) • (N × ~n) = 0

(M ×~t)T × (N × ~n) = 0
~tT ×MT × N × ~n = 0
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Normal Transformation Solution (cont.)

~tT ×MT × N × ~n = 0

~t • ~n = 0⇒~tT × ~n = 0⇒ MT × N = I

MT × N = I

(MT )−1 ×MT × N = (MT )−1

N = (MT )−1
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Normal Transformation Result

N is inverse transpose of M (3× 3 submatrix of M),
for orthogonal matrices: AT = A−1 (rotation is orthogonal),
M is orthogonal M = (MT )−1 ⇒ N = M.
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Renormalization

normals must be of unit length,
can be destroyed by normal transformation→ must be
normalized in vertex shader,
interpolation can also destroy vector length→ must be
normalized in fragment shader.

Figure: Taken from lighthouse3d.com
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http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/glsl-core-tutorial-interpolation-issues/


Lighting

computation of light’s interaction with surfaces,
huge cheat,
ambient, diffuse and specular lighting,
flat, gouraud and phong shading,
directional, point and spot light,
no shadow, no bouncing of light.
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Ambient Lighting
approximates lighting after infinite number of bounces,
homogeneous,
prevents black areas that look unnatural,
usually chosen as fraction of the diffuse (material) color,
I = Ka.

Figure: Ambient spheres
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Directional Light

Figure: Taken from lighthouse3d.com

far away light,
defined by a direction vector (position is irelevant),
can represent e.g. the sun.
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http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg


Gouraud Shading

per vertex shading,
interpolation of vertex colors,
unable to capture lighting details inside polygons.

PV227 GPU Rendering 12 / 23



Diffuse Lighting
simulate light’s interaction with perfectly diffuse material,
light angle dependent,
significant color component,
I = cos(α) · Kd .

Figure: Diffuse spheres
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Diffuse Lighting

Figure: Taken from lighthouse3d.com

amount of incoming light diminishes with increasing angle,

cos(α) = ~L•~N
|~L|·|~N| ,

normalized vectors: I = (~L • ~N) · Kd ,
all vectors must be in same space (usually defined in
world space, computation in camera space).
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http://www.lighthouse3d.com/wp-content/uploads/2012/12/lambert.jpg


Flat Shading
per primitive shading,
no interpolation,
unable to capture smooth changes in light intensity.

Figure: Flat shading
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Combined Lighting
light from various sources can be combined (added),
combination of ambient and diffuse prevents black areas,
I = Ka + cos(α) · Kd ,
value should not be outside the [0.0,1.0] range.

Figure: Ambient + Diffuse spheres
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Specular Lighting
simulate light’s interaction with reflective material,
view angle dependent,
highlight of the light’s color, not material color,
I = cos(β)s · Ks, s controls size of the highlight.

Figure: Specular spheres (Phong vs Blinn-Phong)
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Phong Lighting

Figure: Taken from lighthouse3d.com

amount of reflected light diminishes with increasing angle,
~R = −~L + 2 · (~N • ~L) · ~N,

cos(β) = ~R • ~Eye,
all vectors must be in same space, normalized.
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http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg


Blinn-Phong Lighting

Figure: Taken from lighthouse3d.com

amount of reflected light diminishes with increasing angle,
~H = ~L + ~Eye,
cos(β) = ~H • ~N,
all vectors must be in same space, normalized.
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http://www.lighthouse3d.com/wp-content/uploads/2012/12/spec1.jpg


Basic Lighting
ambient, diffuse and specular form the baseline lighting,
I = Ka + cos(α) · Kd + cos(β)s · Ks,
light from various sources can be combined (added),
value should not be outside the [0.0,1.0] range.

Figure: Ambient + Diffuse + Specular pawns
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Phong Shading
per pixel shading,
smooth lighting including details,
interpolation of vertex attributes (normal, eye, light).

Figure: Per pixel lighting pawns
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Point Light
light source inside the scene,
defined by a position vector (all directions),
can represent e.g. a lightbulb.

Figure: Taken from lighthouse3d.com Point light pawns.
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http://www.lighthouse3d.com/wp-content/uploads/2012/12/dirvspoint.jpg


Spot Light
light source inside the scene,
only a directed cone is illuminated,
defined by a position vector, direction vector and angle,
can represent e.g. a flashlight.

Figure: Spot light pawns
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