Radek Pelinek

2014

Q>

@ assumption: user with similar taste in past will have
similar taste in future

@ requires only matrix of ratings = applicable in many
domains

@ widely used in practice

«O» «F»r «

it
-

@ input: matrix of user-item ratings (with missing values,
often very sparse)

@ output: predictions for missing values

«O» «F»r « =

Er «E>»

DA

@ Netflix — video rental company

@ contest: 10% improvement of the quality of
recommendations

@ prize: 1 million dollars

@ data: user ID, movie ID, time, rating

«O>» «Fr «=)r « =)

it
N)
¥l
i)

@ memory based

e nearest neighbors (user, item)
@ model based

o latent factors

e matrix factorization

«O» «F»r «

Neighborhood Methods: lllustration

Figure 1. The user-oriented neighborhood method. Joe likes the three
movies on the left. To make a prediction for him, the system finds similar
users who also liked those movies, and then determines which other movies
they liked. In this case, all three liked Saving Private Ryan, so that is the first
recommendation. Two of them liked Dune, so that is next, and so on.

Matrix factorization techniques for recommender systems

Latent Factors: lllustration

Serious

IBraveheart
The Color Purple | Amadeus %

Lethal Weapon

Geared MI Geared
toward toward
females males
ﬁ f
- "
Dumb and

Dumber

Escapist

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Matrix factorization techniques for recommender systems

Latent Factors: Netflix Data

15 "
& &
& & &
& 200 &8 & o
& S &
1wk X & S E
S Sang® &
SR A RN A
S SRS &
N & &
£
05 | & & &
& & ¥ & &
Eid &
& e - o
o N I\ S &
g &s\“;@“ & it @“&
g <& & &
5 &, S
bl S O
=05 é'\ &\‘@ ’\\&\\\Q@.@'
SE s o S0
ST B
N e 5% 60
10 & ¥ & SO o
-0) O
S -§‘QN
&
sl ol 1 1 1 1]
-15 -10 -05 0.0 05 10
Factor vector 1

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Matrix factorization techniques for recommender systems

@ explicit

e eg., “stars” (1 to 5 Likert scale)

e to consider: granularity, multidimensionality

e issues: users may not be willing to rate = data sparsity
e implicit

o “proxy” data for quality rating
o clicks, page views, time on page

the following applies directly to explicit ratings, modifications
may be needed for implicit (or their combination)

«Oo» <«F»

it
it
v

DA

Non-personalized Predictions

“averages”, issues:

@ number of ratings (average 5 from 3 ratings vs average
4.9 from 100 ratings)
@ bias, normalization

e some users give systematically higher ratings
e (more details for a CF later)

Note on Improving Performance

@ simple predictors often
provide reasonable
performance

@ further improvements
often small

@ but can have significant
impact on behavior
(not easy to evaluate)

@ = evaluation lecture

["—Random
—Average
= Cinematch
—Prize
—Perfect

RMSE

Introduction to Recommender Systems, Xavier Amatriain

User-based Nearest Neighbor CF

user Alice:
@ item / not rated by Alice:

e find “similar” users to Alice who have rated i
e compute average to predict rating by Alice

@ recommend items with highest predicted rating

User-based Nearest Neighbor CF

Some first questions
— How do we measure similarity?
— How many neighbors should we consider?

— How do we generate a prediction from the neighbors' ratings?

-mmmm

Alice 5 3 4

Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 1 5 5 2 1

Recommender Systems: An Introduction (slides)

User Similarity

Pearson correlation coefficient (alternatives: e.g. spearman
cor. coef., cosine similarity)

|| et | o2 | tem3 | femd | hems |

Alice 5 3 4 4 ?

Userl 3 1 2 3 3 sim = 0,85
User2 4 3 4 3 5 sim = 0,00
User3 3 3 1 5 4 sim =0,70
Userd 1 5 5 2 1 sim=-0,79

Recommender Systems: An Introduction (slides)

XX = X)(Yi—Y)

\/Z’ 1 X X \/Z

(Y; — Y)2

Q>

— . 2ben Sim(a, b) - (ry, — Tb)
d _) |
pred(a, p) =7 + ZbGN sim(a, b)

Q>

@ number of co-rated items

@ agreement on more “exotic” items more important

@ case amplification — more weight to very similar neighbors
@ neighbor selection

«O» «F»r «

i
it

-
it

@ compute similarity between items
@ use this similarity to predict ratings

@ more computationally efficient, often:
number of items << number of users

«O>» «F»r <«

it
it
v

DA

ltem-based Nearest Neighbor CF

Recommender Systems: An Introduction (slides)

e (adjusted) cosine similarity

@ similar to Pearson cor. coef., works slightly better
°

pred(u, p) =

>icr Sim(i, p)rui
ZieR Sim(i’ P)
@ neighborhood size limited (20 to 50)

DA

Preprocessing

O(N?) calculations — still large
Item-item recommendations by Amazon (2003)
calculate similarities in advance (periodical update)

supposed to be stable, item relations not expected to
change quickly
reductions (min. number of co-ratings etc)

@ main idea: latent factors of users/items
@ use these to predict ratings

@ related to singular value decomposition

«O» «F»r «

« =

DA

Notes

@ singular value decomposition (SVD) — theorem in linear
algebra

@ in CF context the name “SVD" usually used for an
approach only slightly related to SVD theorem

@ introduced during the Netflix prize, in a blog post (Simon
Funk)

http://sifter.org/~simon/journal/20061211.html

http://sifter.org/~simon/journal/20061211.html

Singular Value Decomposition (Linear Algebra)

X = USvT

@ U, V orthogonal matrices

@ s diagonal matrix, diagonal entries ~ singular values

low-rank matrix approximation (use only top k singular values)

X U s VT
T11 Z12 ... ZTin
Uyl ... Ui s 0 ... Vi1 ... Uip
21 22 ... 0 .
: : ’ u, u : v, v,
- T ml o mr : Srr rl i rn
mxmn rTXT

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

X =USsv’

@ X — matrix of ratings

@ U — user-factors strengths
e V — item-factors strengths
@ S — importance of factors

«O>» «Fr «=)r « =)

it
N)
¥l
i)

Latent Factors

Serious

|Braveheart |
IThe Color Purple [Amadeus %

Lethal Weapon
Sense and -
Geared Dans‘l‘ll ﬁ] Geared

toward f-% toward
females males
&
Dumb and
&ﬁwﬂumber

Independence
Diaries Day

Escapist

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Matrix factorization techniques for recommender systems

Latent Factors

15 N
& &
& o & &
S TS &
S & &
10 o B oF B &
Sl & St »
ST S &
& L & o
05 | & & &
& & & o & &
&
k\"‘ﬁh AF\ 3o
< oy & & &
£ 00 |- S S Ea éﬁ
g « & &
S N E S"%\
b L Q’ﬁ &Q\@
< NS s
0.5 |- S & SR
SN S
IS S S
Y £ o s Se @
& &o N O PN
10 « v § S 0T
C ‘ \Q\\.Q
%"S
al it] 1] 1]
-1.5 -10 -05 0.0 05 1.0
Factor vector 1

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Matrix factorization techniques for recommender systems

Missing Values

@ matrix factorization techniques (SVD) work with full
matrix

@ ratings — sparse matrix

@ solutions:

e value imputation — expensive, imprecise
e alternative algorithms (greedy, heuristic): gradient
descent, alternating least squares

u — user, | — item

r,i — rating

t.i — predicted rating
b, b,, b; — bias

qi, pu — latent factor vectors (length k)

«O» «Fr « =>»

« =

Simple Baseline Predictors

[note: always use baseline methods in your experiments |

@ naive: 7,; = u, p is global mean
@ biases: 7,; = u+ b, + b;
e by, b; — biases, average deviations
e some users/items — systematically larger/lower ratings

(for a while assume centered data without bias)
?ui - q,Tpu
@ vector multiplication

@ user-item interaction via latent factors
illustration (3 factors):

@ user (p,): (0.5,0.8,—-0.3)
e item (qg;): (0.4,—0.1,—-0.8)

«Oo» <«F»

it
-

DA

- T
rui = q; Pu
@ vector multiplication

@ user-item interaction via latent factors

we need to find g;, p, from the data (cf content-based
techniques)

note: finding g;, p, at the same time

«Oo» <«F»

it
-

DA

Learning Factor Vectors

@ we want to minimize “squared errors” (related to RMSE,
more details leater)

@ regularization to avoid overfitting (standard machine
learning approach)

min Z rai = 67 Pa)* + Mlaill* + llpull?)
(u,

How to find the minimum?

@ standard technique in machine learning
@ greedy, may find local minimum

Gradient Descent

«O» «F»r « =>»

« =

DA

Gradient Descent for CF

prediction error e,; = r,; — q; p,

update:
o qi:=q; +Y(euipu — Aqi)
o pi:= py+y(ewiqi — Apu)
math behind equations — gradient = partial derivatives

7, A — constants, set “pragmatically”

o learning rate y (0.005 for Netflix)
o regularization A (0.02 for Netflix)

Advice

if you want to learn/understand gradient descent (and also
many other machine learning notions) experiment with linear
regression

@ can be (simply) approached in many ways: analytic
solution, gradient descent, brute force search

@ easy to visualize
@ good for intuitive understanding
@ relatively easy to derive the equations

(one of examples in 1V122 Math & programming)

Advice |l

recommended sources:

@ Koren, Yehuda, Robert Bell, and Chris Volinsky. " Matrix
factorization techniques for recommender systems.”
Computer 42.8 (2009): 30-37.

@ Koren, Yehuda, and Robert Bell. " Advances in

collaborative filtering.” Recommender Systems
Handbook. Springer US, 2011. 145-186.

predictions:
Fui = W+ b, + bi + qiTpu
function to minimize:

" (ui)eT

min Y~ (ru—p—by=bi—q] p.)>+A(|lail |*+|lpu|[*+ b5+ b7)]

DA

@ additional data sources (implicit ratings)
@ varying confidence level

@ temporal dynamics

«O» «Fr « =>»

« =

DA

Netflix data

Rating by movie age

3.8

mean score

33

0 500 1000 1500
movie age (days)

2000 2500

Y. Koren, Collaborative Filtering with Temporal Dynamics

DA

Netflix data, jump early in 2004

39

Rating by date

3z

Y. Koren, Collaborative Filtering with Temporal Dynamics

«O>» «F»r <«

> <

>

baseline = behaviour influenced by exterior considerations
interaction = behaviour explained by match between users and

items

baseline score

0.2

38

baseline ©
interaction x

-0.2

0 500

1000

1500 2000 2500
time (days)

Y. Koren, Collaborative Filtering with
=] F

interaction score

Temporal Dynamics

DA

Results for Netflix Data

091 o
60
e 9 s Plain
X 755 e With biases B
50
mu\ 15 s \ith implicit feedback
09 200 With temporal dynamics (v.1)]__
s \ith temporal dynamics (v.2)
0895 B
a 10
H \mn
089
0.885 i
m s D
N HXJ‘ 200
088 — X
0875,
10 100 1,000 10,000 100,000

Millions of parameters

Figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square
error of each of four individual factor models (lower is better). Accuracy improves when
the factor model’s dimensionality (denoted by numbers on the charts) increases. In

addition, the more refined factor models, whose descriptions involve more distinct
sets of parameters, are more accurate. For comparison, the Netflix system achieves
RMSE = 0.9514 on the same dataset, while the grand prize's required accuracy
RMSE = 0.8563.

Matrix factorization techniques for recommender systems

@ clustering

@ association rules
@ classifiers

«O» «F»r «

>

« =

DA

clustering — unsupervised machine learning, e.g., k-means
@ cluster similar users

@ non-personalized predictions (“popularity”) for each
cluster

«O» «F»r « =

Er «E>»

DA

X

X

Customers B, C and D are « clustered » together.
Customers A and E are clustered into another separate
group
+ « Typical » preferences for CLUSTER are:
« Book 2, very high
* Book 3, high
« Books 5 and 6, may be recommended
« Books 1 and 4, not recommended at all

Introduction to Recommender Systems, Xavier Amatriain

Association Rules

@ relationships among items, e.g., common purchases
e famous example (google it for more details): “beer and
diapers”
@ “Customers Who Bought This Item Also Bought..."
e advantage: provides explanation, useful for building trust

@ general machine learning techniques

@ positive / negative classification
@ train, test set

@ logistic regression, support vector machines, decision
trees, Bayesian techniques,

«O» «F»r «

it
-

@ cold start problem

@ popularity bias — difficult to recommend items from the
long tail

@ impact of noise (e.g., one account used by different
people)
@ possibility of attacks

«O>» «Fr «=)r « =)

it
N)
¥l
i)

@ How to recommend new items?

@ What to recommend to new users?

«O» «F»r «

« =

DA

@ use another method (non-personalized, content-based ...)
in the initial phase

@ ask/force user to rate items
@ use defaults (means)

@ better algorithms — e.g., recursive CF

«O>» «Fr «=)r « =)

it
N)
¥l
i)

Recursive Collaborative Filtering

Alice

Userl
User2
User3
User4

5]
3
4
3
1

U W W R W

v Bk BN B

N U W W b

sim =0.85
?
2 Predict
4 rating for
1 Userl

Recommender Systems: An Introduction (slides)

@ requires only ratings, widely applicable
@ neighborhood methods, latent factors

@ use of machine learning techniques

«O» «F»r « =>»

« =

DA

