Komplexná analýza Peter Šepitka podzim 2015 Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Obor komplexných čísiel Pod pojmom komplexné číslo a rozumieme usporiadanú dvojicu (α, β) ∈ R2 . Prvá zložka α tejto dvojice sa nazýva reálna časť komplexného čísla a, druhá zložka β sa nazýva imaginárna časť komplexného čísla a, označujeme α = Re a a β = Im a. Definujeme sčítanie a násobenie komplexných čísiel (α, β) + (γ, δ) := (α + γ, β + δ), (α, β) · (γ, δ) := (αγ − βδ, αδ + βγ). Sčítanie i násobenie komplexných čísiel sú asociatívne a komutatívne binárne operácie a pre každú trojicu a, b, c komplexných čísiel platí distributívny zákon a · (b + c) = a · b + a · c. Pre úplnosť definujeme násobenie komplexného čísla reálnym číslom r(α, β) := (rα, rβ), r ∈ R. Nula – (0, 0) – neutrálny prvok vzhľadom na sčítanie, t.j., (α, β) + (0, 0) = (0, 0) + (α, β) = (α, β). Jednotka – (1, 0) – neutrálny prvok vzhľadom na násobenie, t.j., (α, β) · (1, 0) = (1, 0) · (α, β) = (α, β). Komplexné čísla Funkcie Derivácia Opačné číslo ku komplexnému číslu a = (α, β) −a := (−α, −β) Komplexné číslo −a je jediné riešenie rovnice a + z = (0, 0). Inverzné číslo k nenulovému komplexnému číslu a = (α, β) a−1 := α α2 + β2 , −β α2 + β2 . Komplexné číslo a−1 je jediné riešenie rovnice a · z = (1, 0). Odčítanie komplexných čísiel a, b definujeme a − b := a + (−b). Delenie komplexných čísiel a, b, b = (0, 0), definujeme a/b := a · b−1 . Množina všetkých komplexných čísiel sa označuje C. Algebraická štruktúra (C, +, ·) je teleso, ktoré sa nedá usporiadať (na rozdiel od (R, +, ·)). Komplexné čísla Funkcie Derivácia Algebraický tvar komplexného čísla Podmnožina komplexných čísiel R := {a ∈ C, a = (α, 0), α ∈ R} je podtelesom telesa C izomorfným s telesom R všetkých reálnych čísiel. Preto je možné množiny R a R, ako algebraické štruktúry, stotožniť. To znamená, že v množine C budeme klásť α = (α, 0) pre každé α ∈ R. Potom 0 = (0, 0) a 1 = (1, 0). Ďalej, komplexné číslo (0, 1) sa označuje symbolom i, t.j., i = (0, 1), a nazýva sa imaginárna jednotka. Platí i2 = (−1, 0) = −1. Tieto označenia potom umožňujú vyjadriť komplexné číslo a = (α, β) v tzv. algebraickom tvare a = (α, β) = (α, 0) + (0, β) = α(1, 0) + β(0, 1) = α + iβ. (1) Komplexné číslo a = α + iβ s β = 0 (teda s Im a = 0) sa označuje ako reálne (komplexné) číslo, kým komplexné číslo a = α + iβ s β = 0 (teda s Im a = 0) sa nazýva imaginárne (komplexné) číslo. Imaginárne číslo s nulovou reálnou časťou sa nazýva rýdzo imaginárne (komplexné) číslo. Komplexne združené číslo ¯a k číslu a = α + iβ ∈ C je definované ako ¯a = α − iβ. Komplexné čísla Funkcie Derivácia Absolútna hodnota (veľkosť) |a| komplexného čísla a = α + iβ sa definuje |a| := α2 + β2. (2) Reálne číslo |a| vyjadruje geometrickú vzdialenosť bodu [α, β] od bodu [0, 0] v reálnej rovine. Všeobecne, pre a, b ∈ C reálne číslo |a − b| vyjadruje vzájomnú vzdialenosť bodov [Re a, Im a] a [Re b, Im b] v reálnej rovine. Poznámka 1 (Základné vlastnosti) Nech a, a1, a2 ∈ C. Potom platí: ¯¯a = a, a1 ± a2 = ¯a1 ± ¯a2, a1a2 = ¯a1¯a2, a1/a2 = ¯a1/¯a2, ak a2 = 0. a¯a = |a|2 , |a1a2| = |a1||a2|, |a1/a2| = |a1|/|a2|, ak a2 = 0. trojuholníkové nerovnosti ||a1| − |a2|| ≤ |a1 + a2| ≤ |a1| + |a2|. |Re a| ≤ |a|, |Im a| ≤ |a|. Re a = a + ¯a 2 , Im a = a − ¯a 2i . Re (a1 ± a2) = Re a1 ± Re a2, Im (a1 ± a2) = Im a1 ± Im a2. Komplexné čísla Funkcie Derivácia Komplexná (Gaussova) rovina Prirodzeným modelom množiny C komplexných čísiel je (euklidovská) rovina – komplexná (Gaussova) rovina. Každému komplexnému číslu z = x + iy je priradený bod v rovine so súradnicami [x, y]. Naopak, každému bodu [x, y] roviny odpovedá práve jedno komplexné číslo z = x + iy. Ďalej budeme preto pre jednoduchosť stotožnovať body roviny s komplexnými číslami. Vzdialenosť (metrika) sa v množine C definuje pomocou absolútnej hodnoty komplexného čísla zavedenej v (2), t.j., vzdialenosť dvoch komplexných čísiel z1 a z2 je definovaná d(z1, z2) := |z1 − z2|. Ako je to s pojmom “komplexné” nekonečno? Pre množinu C komplexných čísiel sa definuje iba jedno “nekonečno”. Konkrétne, k množine C sa formálne pridá jeden prvok, ktorý sa označuje symbolom ∞, spĺňajúci vlastnosti ∞ = −∞ = |∞|, ∞ · ∞ = ∞, z + ∞ = ∞, z/∞ = 0, ∞/z = ∞ pre z ∈ C, z · ∞ = ∞, z/0 = ∞, pre z ∈ C \ {0}. Nedefinujú sa výrazy ∞ + ∞, ∞ − ∞, 0 · ∞, 0/0, ∞/∞. Množina C ∪ {∞} sa spolu s danými algebraickými operáciami označuje ˜C a nazýva sa rozšírená (uzavretá) komplexná rovina alebo tiež rozšírená (uzavretá) Gaussova rovina. Komplexné čísla Funkcie Derivácia Goniometrický (polárny) tvar komplexného čísla S modelom komplexnej roviny úzko súvisí tzv. goniometrický (polárny) tvar komplexných čísiel. Každé nenulové komplexné číslo z je možné vyjadriť v tvare z = |z| (cos ϕ + i sin ϕ), (3) kde ϕ je argument komplexného čísla z definovaný rovnicami cos ϕ = Re z |z| , sin ϕ = Im z |z| . (4) Argument ϕ nie je určený jednoznačne (ak ϕ je argument z, potom i ϕ + 2kπ, k ∈ Z, je argument z). Množina všetkých argumentov daného komplexného čísla sa označuje Arg z (je to tzv. mnohoznačná funkcia premennej z). Symbol arg z bude označovať základný (hlavný) argument komplexného čísla z, t.j., argument spĺňajúci −π ≤ arg z < π. Základný argument arg z je pre dané z určený jednoznačne. Platí Arg z = {arg z + 2kπ, k ∈ Z}. (5) Posledná rovnosť sa často zapisuje i v tvare Arg z ≡ arg z (mod 2π). Komplexné čísla Funkcie Derivácia Zavedenie goniometrického tvaru v (3) umožňuje efektívne násobiť a deliť komplexné čísla. Konkrétne, ak z1 = |z1| (cos ϕ1 + i sin ϕ1), z2 = |z2| (cos ϕ2 + i sin ϕ2) sú dve komplexné čísla a ϕ1 a ϕ2 sú ich ľubovoľné argumenty, potom platí z1z2 = |z1||z2| (cos ϕ1 + i sin ϕ1) (cos ϕ2 + i sin ϕ2) = |z1||z2| [(cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2) + i(sin ϕ1 cos ϕ2 + cos ϕ1 sin ϕ2)] = |z1||z2| [cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)]. (6) Z rovnosti (6) potom vyplýva Arg (z1z2) = Arg z1 +Arg z2 a arg(z1z2) ≡ arg z1 +arg z2 (mod 2π), (7) ako aj tzv. Moivreov vzorec na výpočet n-tej mocniny komplexného čísla z zn = |z|n [cos (n arg z) + i sin (n arg z)], n ∈ N. (8) Okrem toho z relácií (7) vyplýva Arg (zn ) = n Arg z a arg(zn ) ≡ n arg z (mod 2π). (9) Komplexné čísla Funkcie Derivácia Podobne, pre podiel z1/z2, z2 = 0, platí z1 z2 = |z1| |z2| cos ϕ1 + i sin ϕ1 cos ϕ2 + i sin ϕ2 = |z1| |z2| cos ϕ1 + i sin ϕ1 cos ϕ2 + i sin ϕ2 cos ϕ2 − i sin ϕ2 cos ϕ2 − i sin ϕ2 = |z1| |z2| cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2) cos2 ϕ2 + sin2 ϕ2 = |z1| |z2| [cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)]. (10) Potom máme Arg z1 z2 = Arg z1 − Arg z2, arg z1 z2 ≡ arg z1 − arg z2 (mod 2π). (11) Pre každé z ∈ C a n ∈ N je n-tá odmocnina zo z definovaná ako n √ z = n |z| cos arg z + 2kπ n + i sin arg z + 2kπ n , (12) kde k = 0, . . . , n − 1. Pre pevné n sa teda jedná o mnohoznačnú funkciu (premennej z), pričom pre každé z ∈ C existuje práve n jeho n-tých odmocnín. Komplexné čísla Funkcie Derivácia Výraz cos ϕ + i sin ϕ, ϕ ∈ R, sa obvykle označuje symbolom eiϕ , t.j., eiϕ := cos ϕ + i sin ϕ. (13) Pre každé z ∈ C potom platí z = |z| eiϕ , ϕ ∈ Arg z. (14) Zápis (14) sa nazýva exponenciálny tvar komplexného čísla z. Pre každé ϕ, ϕ1, ϕ2 ∈ R platí |eiϕ | = 1, arg eiϕ ≡ ϕ (mod 2π), eiϕ = e−iϕ = 1/eiϕ , (15) cos ϕ = eiϕ + e−iϕ 2 , sin ϕ = eiϕ − e−iϕ 2i , (16) ei(ϕ1+ϕ2) = eiϕ1 eiϕ2 , ei(ϕ1−ϕ2) = eiϕ1 /eiϕ2 , (17) eiϕ m = eimϕ , m ∈ Z. (18) Neskôr ukážeme, že výraz eiϕ zavedený v (13) je rozšírením exponenciálnej funkcie ex do oboru komplexných čísiel. Komplexné čísla Funkcie Derivácia Príklad 1 Dané komplexné číslo napíšte v goniometrickom tvare 1 + i. Pre komplexné číslo z = 1 + i platí Re z = 1, Im z = 1, |z| = 12 + 12 = √ 2. Ľubovoľný argument ϕ čísla z potom spĺňa rovnosti cos ϕ = Re z/|z| = 1/ √ 2, sin ϕ = Im z/|z| = 1/ √ 2. Riešenie tejto sústavy je napr. ϕ = 9π/4. Potom platí z = √ 2 [cos (9π/4) + i sin (9π/4)]. Základný argument čísla z je arg z = π/4 a podobne platí z = √ 2 [cos (π/4) + i sin (π/4)]. Komplexné čísla Funkcie Derivácia Príklad 2 Dané komplexné číslo napíšte v goniometrickom tvare −2 √ 3 − 2i. Pre komplexné číslo z = −2 √ 3 − 2i platí Re z = −2 √ 3, Im z = −2, |z| = (−2 √ 3)2 + (−2)2 = 4. Ľubovoľný argument ϕ čísla z spĺňa rovnosti cos ϕ = Re z/|z| = − √ 3/2, sin ϕ = Im z/|z| = −1/2. Základný argument čísla z je arg z = −5π/6 a platí z = 4 [cos (−5π/6) + i sin (−5π/6)]. Komplexné čísla Funkcie Derivácia Príklad 3 Vypočítajte (1 + i √ 3)15 . Použijeme Moivreov vzorec (8). Komplexné číslo z = 1 + i √ 3 prepíšeme do goniometrického tvaru. Platí |z| = 2, arg z = π/3, a teda z = 2 [cos (π/3) + i sin (π/3)]. Potom podľa (8) máme z15 = 215 [cos (15π/3) + i sin (15π/3)] = 215 [cos (5π) + i sin (5π)] = −215 . Poznamenajme, že rovnaký výsledok by sme získali klasickým roznásobením podľa binomickej vety. Komplexné čísla Funkcie Derivácia Príklad 4 Vypočítajme v C 3 √ −8. Podľa (12) existujú práve 3 komplexné tretie odmocniny z čísla z = −8. Goniometrický tvar čísla z je z = 8 [cos (−π) + i sin (−π)]. Podľa (12) platí 3 √ −8 = 3 √ 8 cos −π + 2kπ 3 + i sin −π + 2kπ 3 , pričom k = 0, 1, 2. Postupne dostáveme k = 0 −→ 3 √ 8 cos −π 3 + i sin −π 3 = 1 − i √ 3, k = 1 −→ 3 √ 8 cos π 3 + i sin π 3 = 1 + i √ 3, k = 2 −→ 3 √ 8 (cos π + i sin π) = −2. Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Postupnosti v C Nech r ∈ R+ a z0 ∈ C. Otvoreným kruhom K(z0, r) so stredom v bode z0 a s polomerom r rozumieme množinu K(z0, r) := {z ∈ C, |z − z0| < r}. Množina K(z0, r) sa často označuje aj ako r-okolie bodu z0. Ak z0 = ∞, definujeme K(∞, r) := {z ∈ ˜C, |z| > 1/r}. Nech {an}∞ n=1 je postupnosť komplexných čísiel. Komplexné číslo a0 ∈ ˜C sa nazýva limitou postupnosti {an}∞ n=1, ak pre každé ε-okolie bodu a0 existuje index nε ∈ N tak, že an ∈ K(a0, ε) pre každý index n ≥ nε. Potom píšeme limn→∞ an = a0 alebo aj an → a0. Veta 1 Nech {an}∞ n=1 je postupnosť v C a a0 ∈ C. Potom an → a0 práve vtedy, keď lim n→∞ |an −a0| = 0 ⇐⇒ lim n→∞ Re an = Re a0 & lim n→∞ Im an = Im a0. (19) V tomto prípade platí i an → a0. Podobne, an → ∞ práve vtedy, keď lim n→∞ |an| = ∞, resp., lim n→∞ 1/|an| = 0. (20) Komplexné čísla Funkcie Derivácia Číselné rady v C Nech {an}∞ n=1 je postupnosť v C. Postupnosť {sk}∞ k=1 (tzv. postupnosť čiastočných súčtov) definovaná ako sk := k n=1 an sa nazýva nekonečný rad s členmi an a označuje sa ∞ n=1 an, resp. an. Rad an konverguje (resp., je konvergentný), ak existuje konečná limita postupnosti {sk}∞ k=1. Túto limitu potom označujeme ako súčet s radu a píšeme s = an. V opačnom prípade rad an diverguje (resp., je divergentný). Veta 2 Nech an, bn sú konvergentné rady a a, b ∈ C. Potom platí: limn→∞ an = 0 (nutná podmienka konvergencie radu). Rad an konverguje so súčtom an = an. Rad (aan + bbn) konverguje a (aan + bbn) = a an + b bn. Veta 3 Komplexný rad an konverguje práve vtedy, keď konverguje každý z reálnych radov Re an a Im an, pričom platí an = Re an + i Im an. Komplexné čísla Funkcie Derivácia Komplexný rad an sa nazýva absolútne konvergentný, ak rad |an| je konvergentný. Každý absolútne konvergentný rad je i konvergentný a platí an ≤ |an|. Ak an konverguje, ale rad |an| diverguje, potom hovoríme, že rad an konverguje neabsolútne (relatívne). Platia nasledujúce výsledky. Veta 4 Komplexný rad an konverguje absolútne práve vtedy, keď každý z reálnych radov Re an a Im an konverguje absolútne. Veta 5 (Riemannova veta o prerovnaní absolútne konvergentného radu) Ak komplexný rad an konverguje absolútne, potom každé prerovnanie tohto radu konverguje absolútne s rovnakým súčtom, t.j., platí aτ(n) = an pre každú permutáciu τ množiny N (t.j., pre každú bijekciu τ : N → N). Komplexné čísla Funkcie Derivácia Pri vyšetrovaní (absolútnej) konvergencie komplexných radov môžeme aplikovať mnohé kritériá využívané v reálnej analýze. Porovnávacie kritérium – ak komplexný rad an spĺňa |an| ≤ bn pre každé n ∈ N, kde bn je konvergentný reálny rad, potom rad an konverguje absolútne. D’Alembertovo podielové kritérium – ak komplexný rad an spĺňa |an+1/an| ≤ q < 1 pre každé n ∈ N, potom an konverguje absolútne. Ak |an+1/an| ≥ 1 pre každé n ∈ N, potom rad an diverguje. Obzvlášť, ak existuje limn→∞ |an+1/an| = q ∈ R∗ , potom pre q < 1 (q > 1) rad an konverguje absolútne (diverguje). Cauchyho odmocninové kritérium – ak komplexný rad an spĺňa n |an| ≤ q < 1 pre každé n ∈ N, potom an konverguje absolútne. Ak n |an| ≥ 1 pre každé n ∈ N, potom rad an diverguje. Obzvlášť, ak existuje limn→∞ n |an| = q ∈ R∗ , potom pre q < 1 (q > 1) rad an konverguje absolútne (diverguje). Cauchyho integrálne kritérium – ak rad an spĺňa |an| = f(n) pre každé n ∈ N, kde f : [1, ∞) → R je nezáporná, nerastúca a spojitá funkcia, potom rad an konverguje absolútne práve vtedy, keď nevlastný integrál ∞ 1 f(x) dx konverguje. Komplexné čísla Funkcie Derivácia Príklad 5 Stanovme limitu lim n→∞ (1 + i)n n! . Nájdeme reálnu a imaginárnu časť príslušnej postupnosti. Podľa Príkladu 1 platí (1 + i)n n! = √ 2 [cos (π/4) + i sin (π/4)] n n! = ( √ 2)n cos (πn/4) n! + i ( √ 2)n sin (πn/4) n! . Teda máme Re (1 + i)n n! = ( √ 2)n cos (πn/4) n! , Im (1 + i)n n! = ( √ 2)n sin (πn/4) n! . Keďže platí lim n→∞ Re (1 + i)n n! = 0 = lim n→∞ Im (1 + i)n n! , podľa Vety 1 limita v zadaní príkladu existuje a je rovná 0 + i0 = 0. Komplexné čísla Funkcie Derivácia Príklad 6 Dokážme lim n→∞ in n2n = 0. Uvedený výsledok vyplýva z Vety 1, pretože platí lim n→∞ in n2n − 0 = lim n→∞ |i|n n2n = lim n→∞ 1 n2n = 0. Príklad 7 Nájdime limitu lim n→∞ n ein . Táto limita existuje a je nevlastná, pretože platí lim n→∞ n ein = lim n→∞ n ein = lim n→∞ n = ∞. Pri výpočte sme využili prvú rovnosť v (15), t.j., ein = 1. Podľa Vety 1 potom lim n→∞ n ein = ∞. Komplexné čísla Funkcie Derivácia Príklad 8 Nájdime súčet radu ∞ n=1 1 + i (−1)n−1 n n2 . V danom rade oddelíme jeho reálnu a imaginárnu časť. Dostaneme Re 1 + i (−1)n−1 n n2 = 1 n2 , Im 1 + i (−1)n−1 n n2 = (−1)n−1 n , n ∈ N. Keďže z reálnej analýzy máme 1/n2 = π2 /6, (−1)n−1 /n = ln 2, podľa Vety 3 konverguje i rad v zadaní príkladu a platí 1 + i (−1)n−1 n n2 = π2 6 + i ln 2. Komplexné čísla Funkcie Derivácia Príklad 9 Vyšetrime konvergenciu radu ∞ n=1 in n . Oddelením reálnej a imaginárnej časti daného radu dostaneme Re in n = (−1)k /(2k), n = 2k, 0, n = 2k − 1, Im in n = 0, n = 2k, (−1)k−1 /(2k − 1), n = 2k − 1. Obidva reálne rady Re a Im konvergujú (podľa Leibnizovho kritéria), a preto podľa Vety 3 konverguje i rad v zadaní príkladu. Komplexné čísla Funkcie Derivácia Príklad 10 Vyšetrime konvergenciu radov a) ∞ n=1 n(1 + i)n 3n , b) ∞ n=1 an , a ∈ C. a) Rad konverguje absolútne podľa D’Alembertovho kritéria, nakoľko lim n→∞ (n+1)(1+i)n+1 3n+1 n(1+i)n 3n = lim n→∞ (n + 1)(1 + i) 3n = lim n→∞ (n + 1) √ 2 3n = √ 2 3 < 1. b) Aplikovaním Cauchyho odmocninového kritéria dostaneme lim n→∞ n |an| = lim n→∞ n |a|n = lim n→∞ |a| = |a|. Pre |a| < 1 daný rad konverguje absolútne, pre |a| > 1 rad diverguje. V prípade |a| = 1 rad diverguje, pretože nie je splnená nutná podmienka konvergencie vo Vete 2 (limn→∞ an = 0, resp. neexistuje). Komplexné čísla Funkcie Derivácia Funkcie v C Nech D je podmnožina v ˜C. Pod pojmom (komplexná) funkcia (komplexnej premennej) f budeme rozumieť priradenie, ktoré každému číslu z ∈ D priradí jednu alebo viac hodnôt w ∈ ˜C. Množina D sa nazýva definičný obor funkcie f a označuje sa D(f). Množina H(f) := {w ∈ ˜C, w = f(z), z ∈ D(f)} sa nazýva obor hodnôt funkcie f. Ak je každému z ∈ D(f) priradená práve jedna hodnota w = f(z) ∈ H(f), potom hovoríme o jednoznačnej funkcii f. V opačnom prípade funkciu f označujeme ako mnohoznačnú. Vhodným zúžením oboru hodnôt H(f) mnohoznačnej funkcie f dostaneme jednoznačnú funkciu – tzv. jednoznačnú vetvu komplexnej funkcie f. Vo všeobecnosti teda komplexná funkcia komplexnej premennej nie je zobrazenie, pričom symbol f(z) znamená podmnožinu v H(f). Inverznou funkciou k funkcii f : w = f(z), z ∈ D(f), rozumieme funkciu f−1 : z = f−1 (w), ktorá každému w ∈ H(f) priradí práve tie z ∈ D(f), pre ktoré w = f(z). Zrejme D(f−1 ) = H(f) a H(f−1 ) = D(f). Okrem toho, f(f−1 (w)) = w, pre každé w ∈ H(f), avšak neplatí všeobecne f−1 (f(z)) = z, pre z ∈ D(f). Inverzná funkcia f−1 môže byť jednoznačná i mnohoznačná. Komplexné čísla Funkcie Derivácia Nech f je funkcia. Ak D(f) ⊆ R, jedná sa o funkciu reálnej premennej, inak hovoríme o funkcii komplexnej premennej. V prípade H(f) ⊆ R máme reálnu funkciu, inak (t.j., pre H(f) ⊆ ˜C) máme komplexnú funkciu. Ak platí dokonca H(f) ⊆ C, potom hovoríme o konečnej (komplexnej) funkcii. Nech f je konečná funkcia komplexnej premennej. Potom existujú jediné reálne funkcie u, v : R2 → R také, že pre každé z = x + iy ∈ D(f) ∩ C platí f(z) = u(x, y) + i v(x, y). (21) Funkcie u a v sa nazývajú reálna a imaginárna časť funkcie f, t.j., u(x, y) = Re f(z), v(x, y) = Im f(z). (22) Funkcia ¯f definovaná ¯f(z) := f(z), z ∈ D(f), sa nazýva funkcia komplexne združená s f. Zrejme potom platí ¯f(z) = u(x, y) − i v(x, y) a Re f(z) = f(z) + ¯f(z) 2 , Im f(z) = f(z) − ¯f(z) 2i , z ∈ D(f). (23) Komplexné čísla Funkcie Derivácia Limitu a spojitosť komplexnej funkcie f komplexnej premennej definujeme podobným spôsobom ako v reálnej analýze. Nech M ⊆ ˜C a z0 je hromadný bod množiny M. Číslo w0 ∈ ˜C nazývame limitou funkcie f v bode z0 vzhľadom na množinu M a píšeme lim z→z0 z∈M f(z) = w0, ak pre každé okolie O(w0) bodu w0 existuje rýdze okolie O∗ (z0) bodu z0 také, že pre každé z ∈ O∗ (z0) ∩ M platí f(z) ∈ O(w0). V prípade M = D(f) dostávame limitu funkcie f v tradičnom slova zmysle, t.j., lim z→z0 f(z) = lim z→z0 z∈D(f) f(z) = w0. Okrem toho platia relácie lim z→z0 f(z) = w0 ⇐⇒ lim z→z0 Re f(z) = Re w0, lim z→z0 Im f(z) = Im w0, (24) lim z→z0 f(z) = w0 ⇐⇒ lim z→z0 ¯f(z) = w0. (25) Funkcia f je spojitá v bode z0 ∈ D(f), ak limz→z0 f(z) = f(z0). Pre spojitosť funkcie potom platia výsledky analogické s (24) a (25). Komplexné čísla Funkcie Derivácia Príklad 11 Príkladom reálnych funkcií komplexnej premennej sú funkcie w = Re z, w = |z|, w = arg z. Jedná sa o jednoznačné funkcie. Funkcia w = zn , pre n ∈ N pevné, je komplexná funkcia komplexnej premennej, kým funkcia w = eiϕ , ϕ ∈ R, je komplexná funkcia reálnej premennej ϕ. Ďalej, funkcie w = Arg z, w = n √ z, n ∈ N pevné, sú príkladmi mnohoznačných komplexných funkcií komplexnej premennej. Prvá z nich je nekonečne-značná, druhá je n-značná. Zúžením oboru hodnôt prvej z nich dostaneme napríklad už zmienenú jednoznačnú funkciu ˜w = arg z. Jednoznačnou vetvou druhej funkcie je napríklad funkcia (porovnaj s (12)) ˜w = n |z| cos arg z n + i sin arg z n . Komplexné čísla Funkcie Derivácia Príklad 12 Stanovme limitu lim z→0 Re z z . V limitovanej funkcii oddelíme jej reálnu a imaginárnu časť. Poznamenajme, že konvergencia z = x + iy → 0 je ekvivalentná s x → 0 & y → 0. Platí lim z→0 Re z z = lim (x,y)→(0,0) x x + iy = lim (x,y)→(0,0) x x + iy x − iy x − iy = lim (x,y)→(0,0) x(x − iy) x2 + y2 = lim (x,y)→(0,0) x2 x2 + y2 − i xy x2 + y2 . Z reálnej analýzy funkcií dvoch premenných vieme ľahko ukázať, že limity lim (x,y)→(0,0) x2 x2 + y2 , lim (x,y)→(0,0) xy x2 + y2 neexistujú. Podľa (24) potom neexistuje ani limita v zadaní príkladu. Komplexné čísla Funkcie Derivácia Príklad 13 Vypočítajme limitu lim z→0 z Re z |z| . V limitovanej funkcii oddelíme jej reálnu a imaginárnu časť. Dostaneme lim z→0 z Re z |z| = lim (x,y)→(0,0) (x + iy)x x2 + y2 = lim (x,y)→(0,0) x2 x2 + y2 + i yx x2 + y2 . V tomto prípade platí lim (x,y)→(0,0) x2 x2 + y2 = 0 = lim (x,y)→(0,0) yx x2 + y2 . Preto podľa (24) limita v zadaní príkladu má hodnotu 0 + i0 = 0. Komplexné čísla Funkcie Derivácia Príklad 14 Zistime limitu lim z→i z2 + 1 z − i . V limitovanej funkcii vykonáme algebraické úpravy (rozklad čitateľa na súčin) lim z→i z2 + 1 z − i = lim z→i (z + i)(z − i) z − i = lim z→i (z + i) = 2i. Príklad 15 Rozhodnime o existencii limity lim z→0 ¯z z . Dokážeme, že uvedená limita neexistuje. Nech z sa blíži k bodu 0 = 0 + i0 po reálnej osi, t.j., z = x ∈ R. Potom ¯z/z = ¯x/x = x/x = 1, a v tomto prípade limz→0 ¯z/z = 1. Ak z sa bude k 0 blížiť po imaginárnej osi, t.j., z = iy ∈ i R, potom platí ¯z/z = −iy/iy = −1, a v tomto prípade limz→0 ¯z/z = −1. Pri pohybe po dvoch rôznych cestách do bodu 0 sme dostali dve rôzne hodnoty limity. Preto daná limita neexistuje. Komplexné čísla Funkcie Derivácia Obsah 1 Komplexné čísla 2 Postupnosti, rady a funkcie 3 Komplexná derivácia a holomorfné funkcie Komplexné čísla Funkcie Derivácia Derivácia komplexnej funkcie Definícia 1 (Komplexná diferencovateľnosť) Nech G je otvorená podmnožina v C a f je konečná funkcia definovaná na G. Hovoríme, že f je komplexne diferencovateľná (monogénna) v bode z0 ∈ G, ak existuje konečná limita lim z→z0 f(z) − f(z0) z − z0 resp. lim h→0 h∈C f(z0 + h) − f(z0) h . (26) Limita v (26) sa nazýva derivácia funkcie f v bode z0 a označuje sa f (z0), resp. df dz (z0). V komplexnej analýze sa teda nedefinuje nevlastná derivácia a derivácia v bode ∞. Z Definície 1 vyplýva, že funkcia f : G → C je komplexne diferencovateľná v bode z0 ∈ G práve vtedy, keď existuje komplexné číslo a s vlastnosťou lim h→0 h∈C f(z0 + h) − f(z0) − ah h = 0. (27) V tomto prípade a = f (z0). Výraz ah sa nazýva diferenciál funkcie f v bode z0 a označuje sa df(z0), resp. df(z0)(h). Komplexné čísla Funkcie Derivácia Komplexná derivácia má podobné základné vlastnosti ako derivácia v reálnom obore. Vo všeobecnosti je však komplexná diferencovateľnosť podstatne silnejší koncept než reálna diferencovateľnosť. Veta 6 Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C, potom je v bode z0 spojitá. Dôkaz. Výsledok vyplýva z Definície 1 a z nasledujúceho výpočtu lim z→z0 f(z) = lim z→z0 f(z) − f(z0) z − z0 (z − z0) + f(z0) = f (z0)·0+f(z0) = f(z0). Poznámka 2 Poznamenajme, že podobne ako v reálnom obore spojitosť funkcie nezaručuje komplexnú diferencovateľnosť funkcie. Túto skutočnosť ilustruje Príklad 17. Komplexné čísla Funkcie Derivácia Veta 7 (Základné vlastnosti) (i) Ak funkcie f, g sú komplexne diferencovateľné v bode z0 ∈ C, potom aj funkcie f ± g, f · g a f/g (ak g(z0) = 0) sú komplexne diferencovateľné v bode z0 a platí (f ± g) (z0) = f (z0) ± g (z0), (f · g) (z0) = f (z0) g(z0) + f(z0) g (z0), (f/g) (z0) = f (z0) g(z0) − f(z0) g (z0) /[g(z0)]2 . (ii) Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C a funkcia g je komplexne diferencovateľná v bode f(z0), potom aj zložená funkcia g ◦ f je komplexne diferencovateľná v z0 a platí (g ◦ f) (z0) = g (f(z0)) f (z0). (iii) Ak funkcia f je komplexne diferencovateľná v bode z0 ∈ C a prostá na okolí bodu z0, potom inverzná funkcia f−1 je komplexne diferencovateľná v bode w0 = f(z0) a platí f−1 (w0) = 1/f (z0). Komplexné čísla Funkcie Derivácia V nasledujúcom budeme pracovať s algebraickým tvarom komplexných čísiel a funkcií, t.j., podľa (21) pre dané z ∈ C a danú komplexnú funkciu f máme z = x + iy a f(z) = u(x, y) + iv(x, y) pre x, y ∈ R. (28) Pripomeňme, že jednoznačne určené reálne funkcie u, v sú podľa (22) reálnou a imaginárnou časťou funkcie f. Veta 8 (Nutná podmienka komplexnej diferencovateľnosti) Nech funkcia f je komplexne diferencovateľná v bode z0 = x0 + iy0. Potom funkcie u, v v (28) spĺňajú tzv. Cauchyho–Riemannove rovnice (podmienky) ∂u ∂x (x0, y0) = ∂v ∂y (x0, y0), ∂u ∂y (x0, y0) = − ∂v ∂x (x0, y0). (29) Pre deriváciu f (z0) potom platí f (z0) = ∂u ∂x (x0, y0) + i ∂v ∂x (x0, y0) = ∂v ∂y (x0, y0) − i ∂u ∂y (x0, y0). (30) Komplexné čísla Funkcie Derivácia Náčrt dôkazu. Ak f je komplexne diferencovateľná v bode z0, potom podľa Definície 1 je f definovaná na nejakom okolí bodu z0 a existuje limita v (26). Hodnota tejto limity nezávisí na ceste, po ktorej sa s premenlivým bodom z blížime do bodu z0. Uvažujme napríklad z = x + iy0, kde x ∈ R a x → x0. Do z0 = x0 + iy0 sa teda blížíme po priamke y = y0. Platí potom f (z0) = lim z=x+iy0 x→x0 f(z) − f(z0) z − z0 = lim x→x0 f(x + iy0) − f(x0 + iy0) x − x0 . Pomocou funkcií u, v sa posledná limita dá rozpísať do tvaru f (z0) = lim x→x0 u(x, y0) + iv(x, y0) − u(x0, y0) − iv(x0, y0) x − x0 = lim x→x0 u(x, y0) − u(x0, y0) x − x0 + i v(x, y0) − v(x0, y0) x − x0 . Limitovaním posledného výrazu dostaneme prvú rovnosť v (30). Podobným spôsobom odvodíme i druhé vyjadrenie derivácie f (z0) v (30), kde uvažujeme z = x0 + iy s y ∈ R a y → y0 (priamka x = x0). Porovnaním reálnych a imaginárnych častí vyjadrení v (30) dostaneme rovnosti (29). Komplexné čísla Funkcie Derivácia Poznámka 3 Z Vety 8 vyplýva, že nutnými podmienkami existencie komplexnej derivácie f (z0) je existencia prvých parciálnych derivácií reálnych funkcií u, v v bode [x0, y0] a platnosť Cauchyho–Riemannovych podmienok (29) v bode [x0, y0]. Ako však ukazuje nasledujúca veta, nie sú to zároveň aj postačujúce podmienky. Veta 9 (Nutná a postačujúca podmienka komplexnej diferencovateľnosti) Funkcia f je komplexne diferencovateľná v bode z0 ∈ C práve vtedy, keď reálne funkcie u, v v (28) sú diferencovateľné v [x0, y0] a platia rovnice v (29). Nech G ⊆ C je otvorená množina. Hovoríme, že komplexná funkcia f je komplexne diferencovateľná na G, ak f (z) existuje v každom bode z ∈ G. Z Vety 9 vyplýva, že ak funkcie u, v v (28) majú spojité I. parciálne derivácie na G a spĺňajú podmienky (29) na G, potom f je komplexne diferencovateľná v G. Komplexné čísla Funkcie Derivácia Cauchyho–Riemannove podmienky (29) výrazne obmedzujú triedu reálnych diferencovateľných funkcií u, v, ktoré môžu byť reálnymi, resp. imaginárnymi časťami komplexne diferencovateľných funkcií. Ak totiž funkcia f = u + iv je komplexne diferencovateľná v otvorenej množine G ⊆ C a funkcie u, v majú naviac spojité i druhé parciálne derivácie na G, potom u, v sú riešeniami tzv. Laplaceovej rovnice na G, t.j., platí ∂2 u ∂x2 + ∂2 u ∂y2 = 0, ∂2 v ∂x2 + ∂2 v ∂y2 = 0 na G. (31) Riešenia Laplaceovej rovnice sa označujú ako harmonické funkcie. Reálne a imaginárne časti komplexne diferencovateľných funkcií v G musia preto byť nutne harmonickými funkciami v G. Neskôr ukážeme, že požiadavka existencie a spojitosti druhých (dokonca i všetkých vyšších) parciálnych derivácií funkcií u, v na G je prekvapivo prirodzene zabudovaná v koncepte komplexnej derivácie funkcie f na množine G. Veta 10 Nech G ⊆ C je jednoducho súvislá oblasť. Potom ku každej harmonickej funkcii u (resp. v) na G existuje funkcia f komplexne diferencovateľná na G tak, že u = Re f (resp. v = Im f) na G. Komplexné čísla Funkcie Derivácia Príklad 16 Dokážme, že pre každé pevné n ∈ N platí (zn ) = nzn−1 , z ∈ C. Označme f(z) = zn a nech z0 ∈ C je zafixované. Podľa Definície 1 máme f (z0) = lim z→z0 zn − zn 0 z − z0 = lim z→z0 zn−1 + zn−2 z0 + · · · + zzn−2 0 + zn−1 0 = nzn−1 0 . Príklad 17 Funkcia f(z) = ¯z = x − iy je síce spojitá v celej komplexnej rovine, ale nie je nikde v C komplexne diferencovateľná, pretože limita lim h→0 h∈C z0 + h − z0 h = lim h→0 h∈C z0 + ¯h − z0 h = lim h→0 h∈C ¯h h neexistuje pre žiadne z0 ∈ C (porovnaj s Príkladom 15). Komplexné čísla Funkcie Derivácia Príklad 18 Rozhodnime o existencii derivácie funkcie (ako funkcie v C) f(z) = 1/z overením Cauchyho–Riemannovych rovností (29). Zrejme D(f) = C \ {0}. Oddelíme reálnu a imaginárnu časť funkcie f 1 z = 1 x + iy = x − iy (x + iy)(x − iy) = x x2 + y2 + i −y x2 + y2 . Platí u(x, y) = x/(x2 + y2 ), v(x, y) = −y/(x2 + y2 ), a ďalej ux = (y2 − x2 )/(x2 + y2 )2 , uy = (−2xy)/(x2 + y2 )2 , vx = (2xy)/(x2 + y2 )2 , vy = (y2 − x2 )/(x2 + y2 )2 , Funkcie u, v sú diferencovateľné na D(f) a platia rovnosti (29) na D(f). Teda podľa Vety 9 funkcia f je komplexne diferencovateľná na D(f) a platí 1 z = ux+ivx = y2 − x2 (x2 + y2)2 +i 2xy (x2 + y2)2 = − (x − iy)2 (x2 + y2)2 = − (¯z)2 |z|4 = − 1 z2 . Komplexné čísla Funkcie Derivácia Príklad 19 Určme komplexne diferencovateľnú funkciu f, ktorá spĺňa Re f(z) = x3 − 3xy2 + 3x2 − 3y2 + 1, f(0) = 1. Funkcia u(x, y) = x3 − 3xy2 + 3x2 − 3y2 + 1 je harmonická v C, nakoľko ux = 3x2 − 3y2 + 6x, uxx = 6x + 6, uy = −6xy − 6y, uyy = −6x − 6, ⇓ uxx + uyy = 0 v R2 . Podľa Vety 10 je funkcia u reálnou časťou istej funkcie f, ktorá je komplexne diferencovateľná na C. Jej imaginárnu časť v určíme z podmienok (29) vx = −uy = 6xy + 6y, vy = ux = 3x2 − 3y2 + 6x. Máme teda určiť kmeňovú funkciu v pre dvojicu 6xy + 6y a 3x2 − 3y2 + 6x. Komplexné čísla Funkcie Derivácia Príklad 19 Postupujúc štandardným spôsobom, dostaneme v(x, y) = −y3 + 3x2 y + 6xy + K, K ∈ R. Keďže f(0) = 1, platí v(0, 0) = Im f(0) = 0, a teda K = 0. Funkcia f má tvar f(z) = x3 − 3xy2 + 3x2 − 3y2 + 1 + i (−y3 + 3x2 y + 6xy). Nakoniec, ak dosadeníme za reálne premenné x, y výrazy x = (z + ¯z)/2, y = (z − ¯z)/2i, dostaneme vyjadrenie hodnoty f(z) pomocou komplexnej premennej z. Po úpravách získame finálny predpis f(z) = z3 + 3z2 + 1. Komplexné čísla Funkcie Derivácia Holomorfné funkcie Definícia 2 (Holomorfná funkcia) Hovoríme, že funkcia f je holomorfná (analytická, regulárna) v bode z0 ∈ C, ak f má deriváciu na nejakom okolí bodu z0. Funkcia f je holomorfná na množine G ⊆ C, ak je holomorfná v každom bode z ∈ G. Pojem holomorfnosti funkcie (na rozdiel od komplexnej diferencovateľnosti) je možné zaviesť i pre nevlastný bod ∞. Konkétne, funkcia f(z) sa označuje ako holomorfná v bode ∞, ak funkcia f(1/z) je holomorfná v bode z0 = 0. Príklad 20 Z predchádzajúcich príkladov (Príklady 16, 17 a 18) vyplýva, že funkcia f(z) = zn je holomorfná v celej komplexnej rovine, funkcia g(z) = ¯z nie je holomorfná v žiadnom bode z ˜C a funkcia h(z) = 1/z je holomorfná na ˜C \ {0}. Príklad 21 Funkcia f(z) = |z|2 nie je holomorfná v žiadnom bode z ˜C, hoci je komplexne diferencovateľná v bode z0 = 0, ako sa možno ľahko presvedčiť. Komplexné čísla Funkcie Derivácia Veta 11 Nech G ⊆ C je oblasť. Funkcia f : G → C je konštantná na G práve vtedy, keď je holomorfná na G a f (z) = 0 pre každé z ∈ G. Dôkaz. Implikácia “⇒” vyplýva priamo z Definícií 1 a 2. Naopak, nech f je holomorfná na G s f (z) = 0 pre každé z ∈ G. Funkcie u, v z (28) podľa (30) spĺňajú ux(x, y) = 0 = vx(x, y), vy(x, y) = 0 = −uy(x, y) pre každé [x, y] ∈ G, z čoho vyplýva, že funkcie u, v sú konštantné na oblasti G. To znamená, že i funkcia f = u + iv je konštantná na G. Dôsledok 1 Nech f, g sú funkcie holomorfné na oblasti G ⊆ C. Potom platia tvrdenia. (i) Rovnosť f ≡ g platí na G práve vtedy, keď f ≡ g + K na G, kde K je (komplexná) konštanta. (ii) Funkcia f je polynóm stupňa menšieho ako n na G práve vtedy, keď f(n) ≡ 0 na G. Komplexné čísla Funkcie Derivácia Komplexné funkcionálne rady Nech G ⊆ C je neprázdna množina a nech {fn(z)}∞ n=1 je postupnosť funkcií definovaných na G. Postupnosť čiastočných súčtov {sk(z)}∞ k=1 definovaná sk(z) := k n=1 fn(z), z ∈ G, k ∈ N, sa nazýva (nekonečný) funkcionálny rad s členmi fn a označuje sa ∞ n=1 fn(z), resp. fn(z). Rozlišujeme dva typy konvergencie funkcionálnych postupností a radov. Bodová konvergencia na G – pre každé z0 ∈ G je číselná postupnosť {fn(z0)} (číselný rad fn(z0)) konvergentná(ý). Funkcia f s vlastnosťou f(z) = lim n→∞ fn(z) f(z) = fn(z) pre každé z ∈ G, sa nazýva limitná funkcia postupnosti (súčet radu). Symbolicky značíme fn → f fn → f na G. Komplexné čísla Funkcie Derivácia Rovnomerná konvergencia na G – zhruba povedané, konvergencia k limitnej funkcii (k súčtu) nezávisí na premennej z. Presnejšie, ak f je limitná funkcia postupnosti {fn}, potom pre každé ε > 0 existuje index nε ∈ N tak, že |fn(z) − f(z)| < ε pre každé n ≥ nε a pre každé z ∈ G. Rad fn(z) konverguje rovnomerne k súčtu f na G, ak jeho príslušná postupnosť čiastočných súčtov {sk} konverguje rovnomerne k f na G. Symbolicky zapisujeme fn f ( fn f) na G. Veta 12 (Cauchyho–Bolzanove kritériá rovnomernej konvergencie) Postupnosť {fn} konverguje rovnomerne na G práve vtedy, keď pre každé ε > 0 existuje index nε ∈ N tak, že |fn(z) − fm(z)| < ε pre každé n, m ≥ nε a pre každé z ∈ G. Rad fn konverguje rovnomerne na G práve vtedy, keď pre každé ε > 0 existuje index nε ∈ N tak, že m+n k=n fk(z) < ε pre každé n ≥ nε, m ∈ N, a pre každé z ∈ G. Komplexné čísla Funkcie Derivácia Cauchyho–Bolzanove kritéria udávajú nutné a zároveň postačujúce podmienky rovnomernej konvergencie postupnosti (radu) funkcií. Pre praktické výpočty sa však s výhodu využíva nasledujúce postačujúce kritérium. Veta 13 (Weierstrassovo kritérium rovnomernej konvergencie) Ak pre rad fn existuje konvergentný reálny číselný rad αn s vlastnosťou |fn(z)| ≤ αn pre každé n ∈ N a pre každé z ∈ G, potom rad fn konverguje rovnomerne na množine G. Reálny číselný rad αn vo Vete 13 sa nazýva majorantný rad (majoranta) pre funkcionálny rad fn. Veta 14 Nech {fn} je postupnosť funkcií spojitých na množine G ⊆ C. Ak rad fn konverguje rovnomerne na G k súčtu f, potom funkcia f je spojitá na G. Komplexné čísla Funkcie Derivácia Mocninové rady Dôležitým typom funkcionálnych radov sú tzv. mocninové rady, t.j., rady tvaru ∞ n=0 an(z − z0)n , (32) kde z0, an ∈ C pre každé n ∈ N0. Číslo z0 sa nazýva stred mocninového radu (32) a čísla an jeho koeficienty. Množina všetkých komplexných čísiel z, pre ktoré rad (32) konverguje, sa nazýva obor konvergencie mocninového radu. Je zrejme, že obor konvergencie ľubovoľného mocninového radu je vždy neprázdna podmnožina v C (rad (32) vždy konverguje vo svojom strede z0). Nasledujúce dve vety popisujú štruktúru oboru konvergencie mocninových radov. Veta 15 (Abelova veta) Ak mocninový rad (32) konverguje v istom komplexnom čísle z1 = z0, potom konverguje absolútne v každom z ∈ C spĺňajúcom |z − z0| < |z1 − z0|. Komplexné čísla Funkcie Derivácia Veta 16 (Cauchyho–Hadamardova veta) Pre rad (32) definujme nezáporné reálne číslo R predpisom R := 1/ lim sup n→∞ n |an|. (33) Potom platia nasledujúce tvrdenia. (i) Ak R = 0, potom rad (32) konverguje iba vo svojom strede z0 (teda diverguje na C \ {z0}). (ii) Ak R = ∞, potom rad (32) konverguje absolútne v každom z ∈ C. (iii) Ak 0 < R < ∞, potom rad (32) konverguje absolútne pre každé z ∈ C spĺňajúce |z − z0| < R a diverguje pre každé z ∈ C spĺňajúce |z − z0| > R. Číslo R v (33) sa nazýva polomer konvergencie mocninového radu (32). Pre R kladné a konečné sa množina {z ∈ C, |z − z0| < R} (34) označuje ako konvergenčný kruh radu (33). Rad (33) konverguje absolútne vo svojom konvergenčnom kruhu. Naviac, može konvergovať v niektorých bodoch tzv. konvergenčnej kružnice |z − z0| = R. Komplexné čísla Funkcie Derivácia Poznámka 4 Ak existuje limn→∞ n |an|, potom polomer konvergencie R radu (32) spĺňa R = 1/ lim n→∞ n |an|. (35) Ak naviac existuje i limn→∞ |an+1/an|, potom polomer konvergencie R je možné vyjadriť aj v tvare R = 1/ lim n→∞ an+1 an . (36) Identita (36) vyplýva z nerovností lim inf n→∞ an+1 an ≤ lim inf n→∞ n |an| ≤ lim sup n→∞ n |an| ≤ lim sup n→∞ an+1 an . Veta 17 Rad (32) s kladným polomerom konvergencie konverguje absolútne vo svojom konvergenčnom kruhu. Naviac, rad (32) konverguje rovnomerne na každej kompaktnej podmnožine svojho konvergenčného kruhu. Komplexné čísla Funkcie Derivácia Veta 18 Nech mocninový rad (32) má kladný polomer konvergencie R a nech f značí súčet radu (32), t.j., f(z) = ∞ n=0 an(z − z0)n , |z − z0| < R. Potom funkcia f je spojitá a holomorfná v konvergenčnom kruhu radu (32) a f (z) = a1 + 2a2(z − z0) + · · · = ∞ n=0 (n + 1)an+1(z − z0)n (37) pre každé z ∈ C spĺňajúce |z − z0| < R. Obzvlášť, mocninový rad (37) (tzv. derivácia radu (32)) má opäť polomer konvergencie R. Z Vety 18 vyplýva, že súčet každého mocninového radu je funkcia holomorfná v konvergenčnom kruhu tohto radu. Naviac, tento súčet má derivácie všetkých rádov, ktoré sú opäť holomorfné v danom konvergenčnom kruhu. Neskôr ukážeme, že každá holomorfná funkcia (na otvorenej podmnožine v C) sa dá vyjadriť ako súčet istého mocninového radu. Komplexné čísla Funkcie Derivácia Príklad 22 Najjednoduchším netriviálnym príkladom mocninového radu je geometrický rad ∞ n=0 zn = 1 + z + z2 + z3 + · · · , pozri tiež Príklad 10 b). Jedná sa o mocninový rad so stredom v bode z0 = 0. Nakoľko v tomto prípade an = 1 pre každé n ∈ N0, platí lim sup n→∞ n |an| = lim sup n→∞ 1 = lim n→∞ 1 = 1. Pre polomer konvergencie teda máme R = 1 a konvergenčný kruh daného radu má tvar |z| < 1, podľa Vety 16. Ako sme ukázali v Príklade 10 b), kruh |z| < 1 je zároveň aj oborom konvergencie daného radu (geometrický rad v zadaní totiž diverguje v každom bode konvergenčnej kružnice |z| = 1). Komplexné čísla Funkcie Derivácia Príklad 23 Nájdime polomery konvergencie mocninových radov a) ∞ n=0 (n!) zn , b) ∞ n=0 zn n! . a) Platí an = n! pre n ∈ N0. Keďže existuje limita lim n→∞ an+1 an = lim n→∞ (n + 1)! n! = lim n→∞ (n + 1) = ∞, podľa formuly (36) v Poznámke 4 polomer konvergencie je R = 1/∞ = 0. V súlade s Vetou 16(i) teda daný rad konverguje iba vo svojom strede z = 0. b) V tomto prípade máme an = 1/n! pre n ∈ N0 a lim n→∞ an+1 an = lim n→∞ n! (n + 1)! = lim n→∞ 1 n + 1 = 0. Pre polomer konvergencie potom platí R = 1/0 = ∞. Podľa Vety 16(ii) rad konverguje absolútne v celej komplexnej rovine. Komplexné čísla Funkcie Derivácia Príklad 24 Určme obor konvergencie mocninového radu ∞ n=0 (z + 2)n (n + 2)3 4n . Koeficienty tohto radu majú tvar an = 1 (n+2)3 4n , n ∈ N0. Ďalej platí lim n→∞ an+1 an = lim n→∞ 1 (n+3)3 4n+1 1 (n+2)3 4n = lim n→∞ 1 4 n + 2 n + 3 3 = 1 4 . Preto polomer konvergencie je R = 4. Podľa Vety 16(iii) rad v zadaní príkladu konverguje absolútne na množine |z + 2| < 4 a diverguje pre |z + 2| > 4. V prípade bodov konvergenčnej kružnice, t.j., |z + 2| = 4, platí (z + 2)n (n + 2)3 4n = |z + 2|n (n + 2)3 4n = 4n (n + 2)3 4n = 1 (n + 2)3 . Z reálnej analýzy vieme, že číselný rad 1/(n + 2)3 je konvergentný. Preto podľa porovnávacieho kritéria rad v zadaní príkladu konverguje absolútne i na konvergenčnej kružnici. Obor konvergencie je teda uzavretý kruh |z + 2| ≤ 4. Komplexné čísla Funkcie Derivácia Príklad 25 Nájdime obor konvergencie radu ∞ n=1 z3n n . Jedná sa o mocninový rad anzn , v ktorom niektoré mocniny z “chýbajú” ∞ n=1 z3n n = 0 · z0 + 0 · z1 + 0 · z2 + (1/1) · z3 + 0 · z4 + 0 · z5 + (1/2) · z6 + · · · . Všeobecný koeficient an tohto radu možno zapísať v tvare an = 0, n = 0, n = 3k − 2, n = 3k − 1, 3/n, n = 3k = 0. Postupnosť n |an| má teda dva hromadné body, 0 a limn→∞ n 3/n = 1. To znamená, že lim supn→∞ n |an| = 1, a polomer konvergencie R = 1. Rad v zadaní preto konverguje absolútne v kruhu |z| < 1 a diverguje pre |z| > 1. Komplexné čísla Funkcie Derivácia Príklad 25 Vyšetríme teraz konvergenciu radu na konvergenčnej kružnici |z| = 1. Každé takéto z má podľa (3) goniometrický tvar z = cos ϕ + i sin ϕ, ϕ ∈ [−π, π). Dosadením do radu v zadaní a využitím Moivreovho vzorca (8) dostaneme ∞ n=1 z3n n = ∞ n=1 (cos ϕ + i sin ϕ)3n n (8) = ∞ n=1 cos 3nϕ + i sin 3nϕ n = ∞ n=1 (cos 3nϕ/n) + i ∞ n=1 (sin 3nϕ/n). Pre 3ϕ = 2kπ sú obidva reálne rady v poslednom výraze konvergentné, podľa Dirichletovho kritéria. Teda konverguje i pôvodný komplexný rad v zadaní. Vo zvyšných prípadoch, t.j., v súlade s −π ≤ ϕ < π, pre ϕ1 = −2π/3 z1 = cos (−2π/3) + i sin (−2π/3) = −(1 + i √ 3)/2, ϕ2 = 0 z2 = cos 0 + i0 = 1, ϕ3 = 2π/3 z3 = cos (2π/3) + i sin (2π/3) = (−1 + i √ 3)/2 daný komplexný rad diverguje. Obor konvergencie je teda uzavretý kruh |z| ≤ 1 okrem vyššie uvedených bodov z1, z2, z3.