Skupina A Příklad 1.(2b.) Rozhodněte, zda tečná rovina ke grafu funkce f(x, y) = x2 y2 + 4 v bodě [0, 0, f(0, 0)] prochází bodem [1, 1, 2]. (zamysli se) Řešení. Bod [0, 0] je (neostrým) extrémem funkce, směrové vektory tečné roviny ke grafu funkce v dané bodě jsou tedy nulové (lze spočítat i přímo), její rovnice je tedy z = 4 a bodem [1, 1, 2] neprochází. 2 Příklad 2.(4b.) Určete lokální extrémy funkce f(x, y) = xy2 − 3xy + y + 1. Řešení. Sedlové body [−1/3, 3], [1/3, 0]. 2 Příklad 3.(5b.) Určete těžiště tělesa ležícího mezi kružnicemi x2 +y2 −y = 0 a x2 +y2 −2y = 0. (zkus nejprve kružnice převést do kanonického tvaru) Řešení. [0, 7/6]. 2 Příklad 4.(5b.) Určete distribuční funkci náhodné veličiny udávající povrch koule, má-li její objem rovnoměrné rozdělení pravděpodobnosti na intervalu [4 3 π, 32 3 π]. (povrch koule je 4πr2 , objem 4 3 πr3 ) Řešení. Pro t ∈ [4π, 16π] je FX(t) = 1 6 √ π t 3 2 − 4 3 t 28 3 π = 1 56 π− 3 2 t 3 2 − 1 7 . Pro menší t je distribuční funkce nulová, pro větší rovna jedné ... 2 Příklad 5.(4b.) Na základě přiložené tabulky určete 95% interval spolehlivosti pro střední hodnotu µ náhodné veličiny X s rozdělením N(µ, σ2 ), kde σ2 = 0,04, přičemž byl pořízen náhodný výběr: 1,2; 1,1; 0,7; 0,9; 1,0; 1,1. Standard Normal Distribution Table 0 z z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997 3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 Gilles Cazelais. Typeset with LATEX on April 20, 2006. Řešení. (1 − 0,2√ 6 1,96, 1 + 0,2√ 6 1,96) . = (0,84, 1,16); 2