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1 Introduction

Exercise 1 (Simple random sample). In a simple random sample of size n from population
of finite size N , each element has an equal probability of being chosen. If we avoid choosing
any member of the population more than once, we call it simple random sample without
replacement1.(Dalgaard 2008). If we put a member back to population after choosing it,
we talk about simple random sample with replacement2. Let’s have a set M with
N = 10 elements and we want to choose n = 3 elements (a) without replacement and (b)
with replacement. How many combinations there are? How do these combinations look like
if M = {1, 2, . . . , 10}? Do the same for N = 100, n = 30 and set M = {1, 2, . . . , 100}.

Solution without code:
(a) Number of combinations is

(
N
n

)
. If N = 10 and n = 3, then

(
N
n

)
= N !

(N−n)!n!
=
(

10
3

)
= 120.

(b) Number of combinations with replacement is
(
N+n−1

n

)
. If N = 10 and n = 3, then(

N+n−1
n

)
= (N+n−1)!

(N−1)!n!
=
(

10+3−1
3

)
= 220. If N = 100 a n = 30, then

(
N+n−1

n

)
=
(

100+30−1
30

)
=

2.009491× 1029.

Hints. choose(n,k), combn(n,k)3, sample(x=..., size=..., replace=...)

Exercise 2 (Simple random sample). A group of people are labeled by their identification
numbers (ID) from 1 to 30. Choose (a) randomly 5 people out of 30 without replacement,
(b) randomly 5 people out of 30 with replacement and finally (c) randomly 5 people out of
30 without replacement, where people with ID between 28 and 30 have 4× higher probability
of being chosen than people with ID between 1 and 27.

Exercise 3 (Normal distribution). Let X be a random variable (it could represent for exam-
ple adult height) and let’s assume it is normally distributed with parameters µ (expectation or
mean) and σ2 (standard deviation) which is written as X ∼ N(µ, σ2), µ = 140.83, σ2 = 33.79.
Normal distribution represents a probability distribution model for this random variable.
Calculate probability Pr (a < X < b) = Pr (X < b) − Pr (X < a) = FX (b) − FX (a), where

1n-combination without replacement from N members of set M.
2n-combination with replacement from N members of set M.
3requires library utils
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a = µ − kσ, b = µ + kσ, k = 1, 2, 3.4 Plot probability density function and fill area between
points a and b and label axes x and y as shown in figure 1.

Partial solution:
a = µ− σ = 135.0171, b = µ+ σ = 146.6429,
Pr (|X − µ| > σ) = 0.3173,Pr (|X − µ| < σ) = 1− 0.3173 = 0.6827,
a = µ− 2σ = 129.2042, b = µ+ 2σ = 152.4558,
Pr (|X − µ| > 2σ) = 0.0455,Pr (|X − µ| < 2σ) = 1− 0.0455 = 0.9545,
a = µ− 3σ = 123.3913, b = µ+ 3σ = 158.2687,
Pr (|X − µ| > 3σ) = 0.0027,Pr (|X − µ| < 3σ) = 1− 0.0027 = 0.9973.

1 mu <- 0

2 sig <- 1

3 bin <- seq(mu-3*sig,mu+3*sig,by=sig)

4 pnorm(bin[7]) - pnorm(bin[1]) # 0.9973002

5 pnorm(bin[6]) - pnorm(bin[2]) # 0.9544997

6 pnorm(bin[5]) - pnorm(bin[3]) # 0.6826895

Probabilities 68.27− 95.45− 99.73 are called (empirical) rule or 3-sigma rule.

Hints. Similar example for exponential distribution.

1 # probability density curve

2 x = seq(0, 4, by=0.01)

3 y = dexp(x)

4
5 # tell R we will plot 3 graphs in one row

6 par(mfrow=c(1,3))

7
8 # plot three graphs

9 for(p in c(0.2, 0.1, 0.05)){

10 # plot probability density as a line

11 plot(x, y, type=’l’, xlab=paste0(’Area under the curve = ’, p), ylab=’density’)

12
13 # fill area under the curve

14 p_quantile = qexp(1-p)

15 pol_x = c(p_quantile, 4, seq(4, p_quantile, by=-0.01))

16 pol_y = c(0, 0, dexp(seq(4, p_quantile, by=-0.01)))

17 polygon(pol_x, pol_y, col = "grey")

18 }

Exercise 4 (Normal distribution). Let X ∼ N(µ, σ2), where µ = 150, σ2 = 6.25. Calculate
a = µ−x1−ασ and b = µ+x1−ασ so that Pr (a ≤ X ≤ b) = 1−α is equal to 0.90, 0.95 a 0.99.
Value x1−α is a quantile of standardized normal distribution, i.e. Pr(Z = X−µ

σ
< x1−α) =

1−α,Z ∼ N(0, 1). Plot density function, fill area between points a and b and label axes x a
y as shown in figure 2.

4Note that Pr (a < X < b) = Pr (a ≤ X ≤ b) because probability of a point (here a and b) is zero for
continuous random variables, i.e Pr(a) = Pr(b) = 0. This does not apply to discrete random variables.
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Figure 1: 3-sigma rule; density curve with colored area under this curve between correspond-
ing quantiles on x-axis; volume of the area is equal to the probability of realization of random
variable between these quantiles

Figure 2: Adjusted 3-sigma rule; density curve with colored area under this curve between
corresponding quantiles on x-axis; volume of the area is equal to the probability of realization
of random variable between these quantiles

This gives us rule 90 − 95 − 99 (so called adjusted 3-sigma rule). We used property
Pr
(
uα/2 < Z < u1−α/2

)
= Φ

(
u1−α/2

)
−Φ

(
uα/2

)
= 1−α, where Φ is cumulative distribution

function of normal distribution and in general α ∈ (0, 1/2); in the exercise we used α = 0.1,
0.05 a 0.01. See figure 2.

Exercise 5 (Interactive Normal Distribution). Create an interactive Shiny application show-
ing probability density function of normal distribution N(µ, σ2), where µ = 0 and σ can be
interactively set by user. Fill area between points a and b, where a = µ−kσ, b = µ+kσ, k =
1, 2, 3 and make k interactive too. Finally, add graph title showing probability Pr (a ≤ X ≤ b).

Hints. Create a folder normalPlot and copy following files ui.R and server.R into it.
Run it from R console with command runApp(’normalPlot’, display.mode="showcase") from
parent directory of normalPlot (use function setwd to set your working directory if needed).
Use code from previous examples in server.R to finish the exercise.
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Listing 1: ui.R
1 # if missing, install with command ‘install.packages(’shiny’)‘

2 library(shiny)

3
4 # Define UI

5 shinyUI(fluidPage(

6
7 # Application title

8 titlePanel("Normal Distribution"),

9
10 # Sidebar with a slider input for the number of bins

11 sliderInput("sig",

12 "sigma:",

13 min = 0.1,

14 max = 3,

15 value = 1),

16 sliderInput("k",

17 "k:",

18 min = 1,

19 max = 3,

20 value = 1,

21 step = 1),

22
23 plotOutput(’normalPlot’)

24 ))

Listing 2: server.R
1 library(shiny)

2
3 # Define server logic

4 shinyServer(function(input, output) {

5
6 output$normalPlot <- renderPlot({

7 plot(c(1,2,3), c(1,2,3), main=’TODO’)

8 })

9 })

Exercise 6 (Interactive Normal Distribution 2). Extend previous example by allowing user
to select if he wants use a and b equal to multiple of σ as in previous example or if he wants
to set α, where Pr (a ≤ X ≤ b) = 1 − α. Let the user also choose if he wants to display
normal distribution or exponential distribution

Hints. Use control widgets conditionalPanel and selectInput in file ui.R.

Exercise 7 (Binomial Distribution). Let’s assume that number of people preferring treatment
A over treatment B follows a binomial distribution with parameters p (probability of success)
and N (number of independent trials) denoted Bin (N, p), where N = 20, p = 0.5, i.e. people
prefer both treatments equally. (a) What is the probability that 16 and more patients will
prefer treatment A over treatment B? (b) What is the probability that 16 and more or 4 or
less patients will prefer treatment A over treatment B?
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Figure 3: Screenshot from interactive Shiny application with normal distribution.

Solution without code:
(a) Pr(X ≥ 16) = 1 − Pr(X < 16) = 1 − Pr(X ≤ 15) = 1 −

∑
i:xi≤15 Pr (X = xi) =

1−
∑

i:xi≤15

(
N
xi

)
pxi(1− p)N−xi = 1−

∑
i:xi≤15

(
20
xi

)
0.5xi(1− 0.5)20−xi = 0.0059.

(b) Pr(X ≤ 4, X ≥ 16) = 1 −
∑

i:xi≤15 Pr (X = xi) +
∑

i:xi≤4 Pr (X = xi) = 0.012. This
probability is twice the previous one since Bin(N, 0.5) is symmetric around 0.5.

Hints. pbinom(x, size=..., prob=...) gives you probability Pr(X ≤ x). How do you get
probability Pr(X ≥ x) using this function?

Exercise 8 (Binomial Distribution). Let’s assume that Pr(swirl) = 0.533 = p1 is the
probability of having dermatological pattern swirl on right thumb of male population and
Pr(other) = 0.467 = p2 is the probability of other patterns on right thumb of the same pop-
ulation. Random variable X represents number of swirls and Y number of other patterns,
where X ∼ Bin(N, p1) a Y ∼ Bin(N, p2). Calculate

1. Pr(X ≤ 120) if N = 300

2. Pr(Y ≤ 120) if N = 300

Exercise 9 (Normal approximation of binomial distribution). 5

Let Pr(man) = 0.515 be a proportion of men in population and Pr(women) = 0.485
proportion of women. Let X represent number of men and Y number of women. Under the
assumption of model Bin(N, p) calculate

5 Approximation means ”similar but not exactly equal”, i.e. we approximate some distribution with a
different one (that has certain advantages over the approximated one) or we approximate data with some
distribution (that describes data with help of easily interpretable parameters)

5



1. Pr(X ≤ 3) if N = 5

2. Pr(X ≤ 5) if N = 10

3. Pr(X ≤ 25) if N = 50.

Compare these probabilities with those approximated by normal distribution N(Np,Npq).
Plot density function of normal distribution and superimpose it with probability distribution
of binomial distribution. Plot cumulative distribution function of normal distribution and
superimpose it with cumulative distribution function for binomial distribution. See figure 4.

Figure 4: Approximating binomial distribution with normal distribution for p = 0.515, N =
5, 10 and 50; scatter plot superimposed with density (first row) and cumulative distribution
function (second row).

Exercise 10 (Bivariate normal distribution). Random vector (X, Y )T has bivariate normal
distribution

N2 (µ,Σ) , where µ = (µ1, µ2)T and Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,
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with density

f (x, y) =
1

2π
√
σ2

1σ
2
2 (1− ρ2)

exp

{
− 1

2 (1− ρ2)

{
(x−µ1)2

σ2
1
− 2ρ (x−µ1)(y−µ2)

σ1σ2
+ (y−µ2)2

σ2
2

}}
,

where (x, y)T ∈ R2, µj ∈ R1, σ2
j > 0, j = 1, 2, ρ ∈ 〈−1, 1〉 are parameters, then θ =

(µ1, µ2, σ
2
1, σ

2
2, ρ). Expression in the exponent can be also written as

−1

2

(
x− µ1

y − µ2

)T (
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)−1(
x− µ1

y − µ2

)
,

marginal distributions6 are X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2), ρ is a correlation coefficient7.

Exercise 11 (Bivariate normal distribution). (1) Plot density of bivariate normal distribu-
tion N2 (µ,Σ) using function image() and superimpose it with contour graph of the same
distribution using function contour().
(2) Plot density of bivariate normal distribution N2 (µ,Σ) using function persp(). Cut den-
sity into 12 intervals, where values in these intervals correspond to colors terrain.colors(12).
Use following parameters
(a) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0;
(b) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0.5;
(c) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1.2, ρ = 0.5.
See figure 5 for correct solution.

Hints.

1. create a function bnorm(x,y,mu1,mu2,sigma1,sigma2,corr) returning density of bivariate
normal distribution

2. create vectors x and y with values from -3 to 3 and length n and their cartesian product
(xi, yj), i = 1, . . . , n, j = 1, . . . , n (represented as either n2 × 2 matrix or two vectors
of length n2)

3. apply your function bnorm on the cartesian and reshape it to a matrix Z with dimensions
n× n

4. use x, y and Z in image function to plot density

You don’t have to use Greek letters in axis labels (use mu 1 instead of µ1), but if you
want to, look up expression function. For coloring of persp look at the last example in persp

documentation and modify it to your needs.

6Marginal distribution is a distribution of marginal random variable. Marginal distribution of multivariate
normal distribution is again normal, which is a very useful property.

7From this example it is clear that to sufficiently describe bivariate normal distribution we need 5 pa-
rameters, i.e. mean and variance for marginal distributions of random variables X and Y and correlation
coefficient ρ = ρ(X,Y ) describing the strength of linear relationship of X and Y .

7



Figure 5: Density of bivariate normal distribution with different parameters (first row –
contour graph, second row – perpective 3D graph displayed as surface); the larger absolute
value of ρ, the more are contours different from circles (they are changing into ellipses); as
the difference between σ1 and σ2 is getting larger, we say that difference in variability of X1

and X2 is increasing

Exercise 12 (Kernel density estimation). Simulate N samples from given distribution and
plot them as + symbols on x-axis together with their kernel density estimation. Add theoretical
normal distribution (resp. exponential distribution) with parameters estimated from data.
Do it for (a) N = 50 (b) N = 1000 and following distributions

1. X ∼ N(0, 1)

2. X ∼ pN(−3, 1) + (1− p)N(3, 1) is a mixture of normals, where p = 0.3

3. X ∼ Exp(λ), where λ = 3. Plot theoretical exponential distribution with estimated
parameter λ̂ = 1

X̄
= N∑N

i=1Xi
.

See figure 7 for correct solution.

Hints. To get the same results as in the figure, call set.seed(5) at the beginning of your
script.
Useful functions: density(..., from=, to=, n=), plot(..., lty=2), points(..., pch=3)

Exercise 13 (Bivariate normal distribution). Simulating pseudorandom numbers from N2 (µ,Σ)
can be done with in several ways:
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Figure 6: Kernel density estimation of several distributions (first row n = 50; second row
n = 1000)

1) library library(MASS) and function mvrnorm();
2) library library(mvtnorm) and function rmvnorm();
3) function rnorm() and this algorithm – let X1 ∼ N(0, 1) and X2 ∼ N(0, 1); then (Y1, Y2) ∼
N2 (µ,Σ), where µ = (µ1, µ2)T is vector of means and σ2

1, σ2
2 and ρ are parameters of co-

variance matrix Σ, where the strength of linear relationship Y1 and Y2 is given by magnitude
and sign of ρ; Y1 = σ1X1 + µ1 a Y2 = σ2(ρX1 +

√
1− ρ2X2) + µ2.

Simulate pseudorandom numbers Y1 and Y2 from N2 (µ,Σ) using the first method. Cal-
culate kernel density estimation of (Y1, Y2)T using function kde2d(). Plot it using function
image() and superimpose it with contour graph of bivariate normal density of N2 (µ,Σ)
using function contour().Use following parameter in simulations
(a) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0; (1) n = 50 a (2) n = 1000;
(b) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0.5; (1) n = 50 a (2) n = 1000;
(c) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1.2, ρ = 0.5; (1) n = 50 a (2) n = 1000.
See figure 7 for correct solution.

Hints. kde2d(..., n=100, lims=c(-3, 3, -3, 3))
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Figure 7: Density of bivariate normal distribution (first row n = 50; second row n = 1000)

Exercise 14 (Mixture of two normal distributions). Simulate pseudorandom numbers (1)
from mixture of normal distributions pN2 (µ1,Σ1) + (1− p)N2 (µ2,Σ2) where
θ1 = (µ11, µ12, σ

2
11, σ

2
12, ρ1, µ21, µ22, σ

2
21, σ

2
22, ρ2)T and (2) from bivaraite normal distribution

N2 (µ,Σ), where parameters represent combined vector of means a combined covariance ma-
trix. i.e. θ2 = (µ1, µ2, σ

2
1, σ

2
2, ρ)T . For (1) calculate kernel density estimation of (X, Y )T

using function kde2d().
(a) Plot theoretical density (2) using function image() and superimpose it with contour graph
of theoretical density (2) using function contour().
(b) Plot theoretical density (1) using function image() and superimpose it with contour graph
of theoretical density (1) using function contour().
(c) Plot kernel density estimation of (1) using function image() and superimpose it with
contour graph of theoretical density (1) using function contour().

Cut density into 12 intervals, where values in these intervals correspond to colors terrain.colors(12).
For simulation use these parameters θ1 = (−1.2,−1.2, 1, 1, 0, 1, 1, 1, 1, 0)T and n = 100.

Use parameters from simulation for case (1), i.e. θ̂1 = θ1 = (µ11, µ12, σ
2
11, σ

2
12, ρ1, µ21, µ22, σ

2
21, σ

2
22, ρ2)T =

(−1.2,−1.2, 1, 1, 0, 1, 1, 1, 1, 0)T . For case (2) estimate parameters from simulated data θ̂2 =
(µ̂1, µ̂2, σ̂

2
1, σ̂

2
2, ρ̂)T .

See figure 8 for correct solution.

Hints. For parameter estimations in case (2) use functions mean, std and cor.
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Figure 8: Combined density of bivariate normal distribution (left), mixture density of two
bivariate normal distributions (middle) and kernel density estimation superimposed by mix-
ture density of two bivariate normal distributions (right)

Exercise 15 (Poisson distribution). We have a data (Greenwood and Yule 1920) with num-
ber of injuries of factory workers in the following table

n 0 1 2 3 4 ≥ 5
mn 447 132 42 21 3 2

where n is number of injuries and mn number of workers with n injuries.
Calculate expected number of worker injuries under the assumption that random variable

X representing injuries has Poisson distribution with parameter λ =
∑

n nmn∑
nmn

, i.e. X ∼
Poiss(λ). Create a table with mn and expected mn and display it (figure 9).

Hints. Create a dataframe with two columns and proper row names, then print it. data.

frame(mn=..., expected_mn=..., row.names=...).

Figure 9: Observed and expected frequencies of Poisson distribution.

Exercise 16 (Binomial distribution). In a study from 1889 based on medical records in
Saxony professor Geissler (1889) recorded distribution of boys in families. The study included
M = 6115 families with N = 12 children with following number of boys (n stands for number
of boys and mn number of families with n boys)

Calculate expected mn under the assumption that number of boys X in families follow

binomial distribution π =
∑N

n=0 nmn

NM
and N = 12 (i.e. X ∼ Bin(N, π)).

Compare expected and observed frequencies - do you see any difference? Display mn and
expected mn in a table and visualize both observed and expected frequencies in one graph (see
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n 0 1 2 3 4 5 6 7 8 9 10 11 12
mn 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

figure 10 or use your own imagination). Calculate probability that family will have ≥ 4 and
≤ 6 boys from theoretical distribution (i.e. Pr(4 ≥ X ≤ 6)).

Hints. Add legend with legend(’topleft’, c(’observed’, ’expected’), col=c(’black’, ’red’

), lty=1, bty=’n’). For stairs graph use argument type=’S’ or type=’s’

Figure 10: Observed and expected frequencies of Binomial distribution

Exercise 17 (Approximating Binomial distribution by Poisson). If each of 50 million people
in Italy drives a car next week (independently), then probability of dying in an accident
will be 0.000002, where number of fatalities has binomial distribution Bin(50mil, 0.000002).
Approximate this Binomial distribution with Poisson that has the same mean. Plot both
probabilities for values {50, 51, . . . , 150}.

Exercise 18 (Moments of Bernoulli distribution). Random variable X has Bernoulli distri-
bution (X ∼ Ber(p)) if Pr(X = 1) = 1− Pr(X = 0) = 1− q = p. Derive its expected value
EX =

∑
k kPr(X = k) and variance VarX = E[(X − EX)2] = E[X2]− (EX)2

Exercise 19 (Moments of Binomial distribution). Random variable X has Binomial distri-
bution (X ∼ Bin(N, p)) if

Pr(X = k) =

(
N

k

)
pk(1− p)N−k =

N !

k!(N − k)!
pk(1− p)N−k
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for k ∈ {0, . . . , N}. Derive its expected value EX =
∑

k kPr(X = k) and variance VarX =
E[(X − EX)2] = E[X2]− (EX)2

Hints. The hard way involves Binomial theorem, for the easy way you need to realize
relationship between Binomial and Bernoulli random variable and use results from previous
exercise.

Exercise 20 (Contingency table). 356 people have been polled on their smoking status
(Smoke) and their socioeconomic status (SES). For each person it was determined whether or
not they are current smokers, former smokers, or have never smoked. Also, for each person
their socioeconomic status was determined (low, middle, or high). The data file smoker.csv

(available from study materials) contains only two columns - Smoke and SES. Load this data
into and create contingency table with table() function.

These observations (after converting to probability) form joint distribution Pr(X =
x, Y = y), where X is a discrete random variable for smoker and Y for SES. Calculate
marginal distributions Pr(X = x) =

∑
y Pr(X = x, Y = y), x ∈ {current, former, never}

and Pr(Y = y), y ∈ {high, low,middle}. Also calculate and compare Pr(X = x|Y = high)
with Pr(X = x|Y = low) and Pr(Y = y|X = smoker).

Create a table with expected frequencies using assumption that X and Y are independent
(figure 11). Visualize both tables (observed and expected) with mosaicplot function (figure
12).

Hints. To calculate marginal probabilities use either special table functions margin.table

and prop.table or simply rowSums and colSums.

Figure 11: Observed and expected frequencies for contingency table

Exercise 21 (Number of contingency tables). How many contingency tables of size 4 × 2
there are for N = 20?

Exercise 22 (Multinomial distribution). We have following random variables (1) socioeco-
nomic status (high - H, low - Lo), (2) political affiliation (democrat - D, republican - R) and
(3) political philosophy (libral - Li, convservatism - C). Let’s denote their interactions like
this: X1 (H-D-Li), X2 (H-D-C), X3 (H-R-Li), X4 (H-R-C), X5 (Lo-D-Li), X6 (Lo-D-C),
X7 (Lo-R-Li) a X8 (Lo-R-C). We have random sample of size N = 50. Probabilities pj are
in the following table

D-Li D-C R-Li R-C all
H 0.12 0.12 0.04 0.12 0.4
Lo 0.18 0.18 0.06 0.18 0.6
all 0.30 0.30 0.10 0.30 1.0
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Figure 12: Mosaic plot of contingency table

Calculate Var[X1], Var[X3], Cov [X1, X3], Cor [X1, X3] and expected frequencies Npj, j =
1, 2, . . . , 8.

Hints. X = (X1, X2, . . . , X8) ∼ Mult(N,p), where N = 50, p = (p1, p2, . . . , p8)T , we know
that Xj ∼ Bin(N, pj), pj are given by table above j = 1, 2, . . . , 8.

Exercise 23 (Product-multinomial distribution). Let’s have the same probabilities as in
previous exercise, but now with two separate random samples - first with size N1 = 30
from group H and the second with size N2 = 20 from group Lo. Denote interactions of
random variables X11 = X1|1 (H-D-Li), X12 = X2|1 (H-D-C), X13 = X3|1 (H-R-Li), X14 =
X4|1 (H-R-C), X21 = X1|2 (Lo-D-Li), X22 = X2|2 (Lo-D-C), X23 = X3|2 (Lo-R-Li) and
X24 = X4|2 (Lo-R-C), where X1 = (X11, X12, X13, X14)T and X2 = (X21, X22, X23, X24)T .
Then X = (X1,X2) has product-multinomial distribution with K = 2, N1 = 30, J1 = 4,
N2 = 20, J2 = 4. Notation Xj|k, where j = 1, 2, 3, 4 and k = 1, 2 highlights the fact, that
distribution is conditioned by socioeconomic status (high – H, low – Lo), i.e. distribution
in table columns is conditioned by its row. Realizations Xj|k are denoted as nj|k = nkj,
similarly probabilities Xj|k = Xkj as pj|k = pkj. Calculate conditional probabilities pj|k,
expected frequencies Nkpkj, Var[X13], Cov [X21, X23] and Cor [X11, X23].

Exercise 24 (Binomial distribution, simulation study). Generate M = 1000 pseudo-random
numbers from distribution Bin(5, 0.5). Create a table with observed and theoretical probabil-
ities (for n = 0, 1, . . . , 5).

r 0 1 2 3 4 5
observed probabilities 0.031 0.158 0.302 0.324 0.161 0.024

theoretical probabilities 0.031 0.156 0.312 0.312 0.156 0.031

Superimpose histogram of simulated numbers with theoretical density function. See figure 13.

Hints. For histogram plot use breaks and probability arguments.
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Figure 13: Histogram superimposed with theoretical distribution of Bin(5, 0.5)

Exercise 25 (Normal distribution, simulation study). If random variable X ∼ N(150, 6.25),
what distribution has its arithmetic average Xn? Verify your result using simulations for
n = 30. Make 5000 simulations (each simulation involves generating 30 realizations of X)
and for each simulation calculate arithmetic average xm, m = 1, 2, . . . ,M , where M =
5000. Superimpose their histogram (normalized) with theoretical density function for Xn you
derived. Calculate Pr(Xn > 151) from simulated data and compare this result with theoretical
(expected) probability. See figure 14.

Exercise 26 (Normal distribution, simulation study). Let X ∼ N(µ1, σ
2
1) a Y ∼ N(µ2, σ

2
2).

Then Xn1 − Y n2 ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
). Use µ1 = 100, σ1 = 10, µ2 = 50, σ2 = 9 and (a)

n1 = 4, n2 = 5, (b) n1 = 100, n2 = 81. Make M = 1000 simulations and for each calculate
difference xm − ym,m = 1, 2, . . . ,M . Superimpose histogram (normalized) of the differences
with theoretical density function of difference Xn1−Y n2. For both cases (a) and (b) calculate
Pr(Xn1 −Y n2) < 52 from simulated data and compare this result with theoretical probability.

Exercise 27 (Maximum-likelihood, Poisson distribution). Let X ∼ Poiss(λ). Simulate
realizations x1, . . . , xn. Use n = 100 and λ = 4. Plot log-likelihood function of Poisson
distribution

l(λ|x) =
n∑
i=1

xi lnλ− nλ.

for λ ∈ [2, 6]. Find maximum likelihood estimate of λ and mark it in graph with dashed line.
See figure 15.
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Figure 14: Histogram superimposed with theoretical distribution of N(150, 6.25/n)

Hints. Start with writing a function loglikehood = function(x, lambda) that calculates log-
likelihood for single λ. Then in a for loop or using sapply function calculate log-likelihood
for λ ∈ [2, 6].

To find maximum of a function, either use formula for MLE from the lecture or find
it empirically from vector of log-likelihoods using function which.max(lambdas). To plot a
vertical line use abline(v=..., lty=’dashed’).

Exercise 28 (Maximum-likelihood, Poisson distribution). Use data from exercise 15 for
log-likelihood function from the previous exercise and plot it. Note that the log-likelihood
function will have to be slightly modified to work with counts of realizations from exercise
15. See figure 15.

Exercise 29 (Maximum-likelihood, Binomial distribution). Let X ∼ Bin(N, p) and x its
realization8. Formulate its likelihood function L(p|x) and log-likelihood function l(p|x). Use
log-likelihood function to derive maximum-likelihood estimate p̂ = argmax

p
l(p|x) of parameter

p and Fisher information I(p̂) = − ∂2

∂p2
l(p|x)|p=p̂.

Exercise 30 (Quadratic approximation of log-likelihood function). Let X ∼ Bin(N, p) and
x its realization. Plot scaled log-likelihood function of binomial distribution with p on x-axis

8We work with just one realization, so L(p|x) =
∏1

i=1 f(x|p). You would get the same results if you
worked with N realizations with Bernoulli distribution Ber(p).
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Figure 15: Left: Log-likelihood function for simulated data from Poiss(λ = 4). Right:
Log-likelihood function for number of injuries of factory workers.

and scaled log-likelihood l∗(p|x) = l(p|x) −max(l(p|x)) on y-axis. Compare l∗(p|x) with its

quadratic approximation calculated using Taylor approximation ln(L(p|x)
L(p̂|x)

) ≈ −1
2
I(p̂)(p− p̂)2.

Use (a) x = 8, N = 10, (b) x = 80, N = 100 and (c) n = 800, N = 1000 with reasonable
ranges for both axes. See figure 16.

Hints. Use lines(..., lty="dashed") for the dashed line.

Figure 16: Compare scaled log-likelihood function (full line) with its quadratic approximation
(dashed line).
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2 Location characteristics

Realizations will be denoted as x1, x2, . . . , xn, sorted realizations as x(1) ≤ x(2) ≤ . . . ≤
x(n). Then we define following estimations of location characteristics (sample location char-
acteristics):

• sample minimum Xmin, with realization xmin = x(1);

• sample maximum Xmax, with realization xmax = x(n);

• sample (arithmetic) mean X, with realization x = 1
n

∑n
i=1 xi = 1

n

∑nj

j=1 xjfj, nj 6
n, where fj are frequencies (counts) of xj and n =

∑
j fj;

• sample mode Xmod, with realization xmod is the most common value (in case of
discrete variable it is value x in which probability function has its maximum; in case
of continuous variable it is value x in which density function has its maximum);

• sample median X̃(robust estimation of location), with realization

x̃ =

{
x(n+1

2 ) if n is odd,

1
2

(
x(n

2 ) + x(n
2

+1)

)
if n is even;

distribution is symmetric, if x = x̃ = xmod, distribution is positively skewed (right),
if x > x̃ > xmod and distribution is negatively skewed (left), if x < x̃ < xmod;

• sample quartiles there are three

– sample first (lower) quartile Q1, with realization x̃0.25 is a value that splits off
the lowest 25% of data from the highest 75%,

Pr [xmin, x̃0.25] = Pr [X ≤ x̃0.25] =
1

4
,Pr [x̃0.25, xmax] = Pr [X ≥ x̃0.25] =

3

4
;

– sample second quartile (median) Q2, with realization x̃0.5 = x̃ is a value that
splits off the lowest 50% of data from the highest 50%,,

Pr [xmin, x̃0.5] = Pr [X ≤ x̃0.5] =
1

2
,Pr [x̃0.5, xmax] = Pr [X ≥ x̃0.5] =

1

2
;

– sample third (upper) quartile Q3, with realization x̃0.75 is a value that splits
off the lowest 75% of data from the highest 25%,,

Pr [xmin, x̃0.75] = Pr [X ≤ x̃0.75] =
3

4
,Pr [x̃0.75, xmax] = Pr [X ≥ x̃0.75] =

1

4
;

• sample deciles X̃k, with realizations x̃k splits data to ten buckets, i.e. k/10 of data
are lower than a decile and (10− k)/10 are higher, where k ∈ {0, 1, . . . , 10};
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• sample percentile X̃p (read as 100p-percentile), with realization x̃p defined as

x̃p =

{
x(k+1) for k 6= np,

1
2

(
x(k) + x(k+1)

)
for k = np,

where k = bnpc, which is floor of np;

• sample five-number summary (Xmin, Q1, Q2, Q3, Xmax)T , with realizations (xmin,
x̃0.25, x̃0.50, x̃0.75, xmax)T .

Robust location characteristics (resistant to outliers) are

• sample γ-truncated arithmetic average Xg, with realization xg that is calculated
as

xg =
1

n− 2g

(
x(g+1) + x(g+2) + . . .+ x(n−g)

)
,

where g = {γn} , g = bγnc , γ = 0.1, 0.2. More than γ100 % observations must be
replaced for the γ-truncated average to become large or small relative to the original
[9breakdown point xg is therefore γ],

• sample γ-winsorized arithmetic average Xw, with realization xw is defined as

xw =
1

n

(
(g + 1)x(g+1) + x(g+2) + . . .+ (g + 1)x(n−g)

)
.

More than γ100 % must be replaced for the γ-winsorized average to become large or
small relative to the original [breakdown point xw is therefore γ].

Exercise 31 (height of 10-year old girls). Let’s have n = 12 heights (in cm) of randomly
sampled 10-year old girls sorted by height (order denoted as ri for x(i); in case the values
are equal, ri is calculated as average of their order numbers).

Table 1: Sorted realizations xi and their order ri for heights of 10-year old girls
i 1 2 3 4 5 6 7 8 9 10 11 12

x(i) 131 132 135 141 141 141 141 142 143 146 146 151
ri 1 2 3 5.5 5.5 5.5 5.5 8 9 10.5 10.5 12

Then x
·

= 140.83, x̃ = 1
2

(
x(6) + x(7)

)
= 141, x̃0.25 = 1

2

(
x(3) + x(4)

)
= 138, where k =

b12× 0.25c = 3, Q3 = x̃0.75 = 1
2

(
x(9) + x(10)

)
= 144.5, where k = b12× 0.75c = 9.

Write functions for calculation of all location characteristics. Verify your functions on
characteristics above. Don’t use built-in functions for location characteristics such as mean,
quantile, etc. Use γ = 0.1 for truncated and winsorized arithmetic averages.

9Breakdown point represents number of observations we need to significantly change value of location
characteristics. For γ-truncated and γ-winsorized arithmetic average it is γn observations, for median n/2
observations and for simple arithmetic average changing just one observation is enough (that’s the reason
we say that arithmetic average is very sensitive to outliers).
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3 Spread (variability) characteristics

Then we define following estimations of spread (variability) characteristics (sample spread
characteristics):

• sample variance S2, with realization

s2 = s2
n−1 = s2

x =
1

n− 1

n∑
i=1

(xi − x)2 ;

under linear transformation sample variance changes like this10

s2
y = s2

a+bx = b2s2
x,

i.e.

s2
y = s2

a+bx =
1

n− 1

n∑
i=1

(
a+ bxi − a+ bx

)2

=
1

n− 1

n∑
i=1

(a+ bxi − (a+ bx))2

=
1

n− 1

n∑
i=1

(b (xi − x))2 = b2s2
x;

• sample standard deviation S, with realization

s = sn−1 = sx =
√
s2
x;

under linear transformation standard deviation changes like this

sy = sa+bx = |b| sx,

• coefficient of variation Vk, with realization vk represents normalized form of standard
deviation (inversion of signal-to-noise ratio; fraction of variability to mean)

vk =
sx
x

;

it is usually denoted in percentage points, i.e. 100 × (sx/x) % and can be used only
for realizations with positive values;

• sample variance of arithmetic average S2
X

, with realization

s2
x =

s2
x

n
;

10Equation tells us that variance of shifted and rescaled variable y is equal to square of scale multiplied
by variance of original variable x.
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• sample standard deviation of arithmetic average (sample standard error)
SX , with realization

sx =
sx√
n

;

• sample skewness B1, with realization

b1 =
n−1

∑n
i=1 (xi − x)3[

n−1
∑n

i=1 (xi − x)2]3/2 =

√
n
∑n

i=1 (xi − x)3[∑n
i=1 (xi − x)2]3/2 ,

distribution is symmetric, if b1 = 0, positive skewness (density on the left side is steeper
than the right side), if b1 > 0 a negative skewness (density on the right side is steeper
than the left side), if b1 < 0;

• sample kurtosis B2, with realization

b2 =
n−1

∑n
i=1 (xi − x)4[

n−1
∑n

i=1 (xi − x)2]2 − 3 =
n
∑n

i=1 (xi − x)4[∑n
i=1 (xi − x)2]2 − 3,

distribution is normal (mesokurtic), if b2 = 0, pointy (leptokurtic), if b2 > 0 and flat
(platykurtic), if b2 < 0;

• sample sum of squares SS =
∑n

i=1

(
Xi −X

)2
, with realization

SSobs =
n∑
i=1

(xi − x)2 ,

• sample sum of absolute deviation SAD =
∑n

i=1 |Xi − X̃0.5|, with realization

SADobs =
n∑
i=1

|xi − x̃0.5| ;

• sample arithmetic average deviation MAD = 1
n

∑n
i=1 |Xi− X̃0.5|, with realization

MADobs = SADobs/n;

• sample range D = Xmax −Xmin, with realization

dobs = xmax − xmin;

• sample interquartile range DQ = Q3 −Q1, with realization

dQ = x̃0.75 − x̃0.25;

distribution is (between quartiles) symmetric, if x̃0.75 − x̃0.50 = x̃0.50 − x̃0.25, positively
skewed, if x̃0.75− x̃0.50 > x̃0.50− x̃0.25 and negatively skewed, if x̃0.75− x̃0.50 < x̃0.50− x̃0.25;
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• sample decile range DD = X̃0.9 − X̃0.1, with realization

dD = x̃0.9 − x̃0.1;

• sample percentile range DP = X̃0.99 − X̃0.01, with realization

dP = x̃0.99 − x̃0.01.

Robust spread characteristics (variability) are

• sample γ-truncated variance S2
g , with realization s2

g calculated as

s2
g =

1

n− 2g − 1

n−g∑
i=g+1

x(i);

more than γ100 % must be replaced so that γ-truncated variance changes to large
or small relative to the original s2 [breakdown point s2

g is γ]; it applies that s2
g < s2

because truncating removes outliers;

• sample γ-winsorized variance S2
w, with realizations s2

w; more than γ100 % must
be replaced so that gamma-winsorized variance changes to large or small relative to
the original s2 [breakdown point s2

w is γ]; it applies that s2
w < s2 because winsorization

pulls outliers closer to the mean;

• sample quartile coefficient of variation Vk,Q = (Q3−Q1)/Q2, with realization vk,Q
calculated as

vk,Q =
x̃0.75 − x̃0.25

x̃
.

Other robust spread characteristics characterized by modified boundaries are

• sample robust minimum and maximum (“inner boundaries”) X∗min = BD =
Q1 − 1.5DQ and X∗max = BH = Q1 + 1.5DQ, with realizations defined as

x∗min = bD = x̃0.25 − 1.5 (x̃0.75 − x̃0.25) ,

x∗max = bH = x̃0.75 + 1.5 (x̃0.75 − x̃0.25) ,

values outside of boundaries are considered to be suspicious, potential outliers ;

• sample robust minimum and maximum (“outer boundaries”) defined as B∗H =
Q1 − 3(Q3 − Q1), B∗H = Q3 + 3(Q3 − Q1), with realizations b∗D = x̃0.25 − 3dQ, b∗H =
x̃0.75 + 3dQ;

– if there are any xi < b∗D ∨ xi > b∗H , we call them distant values11,

– if xi ∈ 〈b∗D, bD) ∨ (bH , b
∗
H〉, these are outer values,

11Symbol ∨ means “or” and symbol ∧ means “and”.
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– if xi ∈ 〈bD, bH〉, these are inner values or values close to median;

– normal distribution has these properties BH −BD = Q3 + 1.5DQ−Q1 + 1.5DQ =

4DQ
·

= 4.2; probability of xi /∈ 〈BD, BH〉 is then 0.04;

• sample robust skewness B1Q and B1O and their variance under asymptotic normal-
ity B1·, where · = Q or O, with realizations defined as

– quartile skewness

b1Q =
(x̃0.75 − x̃0.50)− (x̃0.50 − x̃0.25)

x̃0.75 − x̃0.25

, V aras(b1Q) = 1.84,

– octile skewness

b1O =
(x̃0.875 − x̃0.50)− (x̃0.50 − x̃0.125)

x̃0.875 − x̃0.125

, V aras(b1O) = 1.15.

Exercise 32 (height of 10-year old girls). Calculate all spread characteristics for the sample
with heights of 10-year old girls.

Exercise 33 (Hypothesis testing). Let X ∼ Bin(N, p) be a random variable with N = 1000
and p = 0.5. Make 100000 simulations x1, . . . , x100000 and for each simulation calculate
maximum likelihood estimate of p, i.e. p̂ = x

N
. Plot histogram of p̂ and add vertical line at

value 0.534. Calculate percentage of p̂ that are higher than 0.534.

Exercise 34 (Hypothesis testing). Out of 1000 newborn children, 534 of them were boys
and 466 girls. Test null hypothesis that probabilities of having a boy or a girl are equal.
Calculate p-value, confidence interval, test statistic and critical region. Use Wald statistic
and Likelihood statistic.
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Figure 17: Histogram of simulations of p̂ with line at 0.534.
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