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Probabilistic and Statistical Models
Random variable, random vector, data, individuals

◮ random variable and random vector
◮ random variable X is a function from a sample space to a

set of real numbers X : Y → R (a set of all possible

outcomes)
◮ 2-dimensional random vector (X1,X2)

T : Y → R2

◮ k -dimensional random vector (X1,X2, . . . ,Xk )
T : Y → Rk

◮ data – data vector and data matrix – the elements of a

vector and the rows of a matrix are measured on

individuals (statistical units)

◮ data as realisations of X – n-dimensional vector

x = (x1, x2, . . . , xn)
T , where n is a sample size

◮ data as realisations of (X1,X2)
T – (n × 2)-dimensional

matrix with rows (xi1, xi2)
T , i = 1,2, . . . , n and columns x1

and x2
◮ data as realisations of (X1,X2, . . . ,Xk )

T –

(n × k)-dimensional matrix with rows (xi1, xi2, . . . , xik )
T ,

i = 1,2, . . . , n and columns x1, x2 and xk

Probabilistic and Statistical Models
Model

◮ based on probabilistic sampling principles, the

individuals are sampled from a population

◮ attribute – a specific value of a variable

◮ with certain precision, data are measured on individuals

◮ descriptive statistics – describing and summarising data

◮ inferential statistics (statistical inference) – inferring

(drawing conclusions) about random variable based on a

model fitted to data

◮ F is a set of models (probabilistic or statistical)
◮ X is characterised by a model F (·), F ∈ F
◮ (X1,X2)

T is characterised by a model F (2)(·), F ∈ F
◮ (X1,X2, . . . ,Xk )

T is characterised by a model F (k)(·), F ∈ F

◮ parameter – a numerical quantity that characterises a

model – one-dimensional parameter θ, k -dimensional

vector of parameters θ = (θ1, θ2, . . . , θk )
T

Probabilistic and Statistical Models
Distribution function, probability and density function

◮ useful assumption – Xi , i = 1,2, . . . , n, are independently
identically distributed random variables

◮ distribution function
◮ discrete random variable

FX (x) = Pr (X ≤ x) =
∑

i:xi≤x

Pr (X = xi) ,

where
∑k(∞)

i=1 pi = 1, Pr (X = xi) = pi = fX (xi) = f (xi),∀xi ,

where pi is probability mass function; {xi ,pi}
k(∞)
i=1 , k ∈ N+

◮ continuous random variable

FX (x) =

∫ x

−∞

f (t)dt , f (x) ≥ 0,

where
∫∞

−∞
f (x)dx = 1, fX (x) = f (x) = ∂

∂x
FX (x) is density

function



Probabilistic and Statistical Models
Parametric and non-parametric model

◮ Θ is a parametric space, the support of F (·; θ) is
Yθ ⊆ R

n (the smallest set, where the distribution function

is defined); sample space Y = ∪θ∈ΘYθ
◮ F as a parametric set of distribution functions

F =
{
F (·; θ) : θ ∈ Θ ⊆ Rk

}
,

◮ F as a parametric set of probability or density

functions

F =
{
f (·; θ) : θ ∈ Θ ⊆ Rk

}

◮ F as non-parametric set

F = {a set of all density functions} ,

alternatively, probability or distribution function can be used

Probabilistic and Statistical Models
Reading of mathematical notation

◮ the term ”probability model” is often reduced to

”distribution”

◮ ”Random variable X is distributed as F (x)” or ”random
variable X is characterised by distribution F (x)”, notation
X ∼ FX (x); symbol ”∼” means ”asymptotically”, ”for

sufficiently large n” (notation X ∼ fX (x) is used very rarely)

◮ ”Random variable X is distributed as random variable Y ” or

”Random variable X and Y are identically distributed”

(notation X ∼ Y or FX (x) ∼ FY (y)

◮ the term ”statistical model” is often reduced to ”model”

(usually referred as causal statistical model or model of

causal dependence)

◮ ”Y depends on X ”, where X is independent variable and

Y is dependent variable (notation Y |X )

Probabilistic and Statistical Models
Reading of mathematical notation

◮ ”X is normally distributed with parameters µ and σ2”,

notation X ∼ N(µ, σ2), where θ = (µ, σ2)T

◮ ”X = (X1,X2)
T is characterised by bivariate normal

distribution with parameters µ1, µ2, σ
2
1, σ

2
2 and ρ”, notation

X ∼ N2(µ,Σ), where θ = (µ1, µ2, σ
2
1, σ

2
2, ρ)T

◮ ”X = (X1,X2, . . . , ,Xk )
T is characterised by multivariate

normal distribution with parameters µ1, µ2, . . ., µk , σ
2
1, σ

2
2,

. . ., σ2
k , and ρ1,2, . . ., ρk−1,k , ”, notation X ∼ Nk (µ,Σ),

where θ = (µ1, µ2, . . . , µk , σ
2
1, σ

2
2, . . . , σ

2
k , ρ1,2, . . . , ρk−1,k )

T

◮ ”X is binomially distributed with parameter p”, notation

X ∼ Bin(N,p), where θ = p

◮ ”X is characterised by distribution with parameter λ”,
notation X ∼ Poiss(λ), where θ = λ

◮ ”X = (X1,X2, . . . , ,Xk )
T is multinomially distributed with

parameter p”, notation X ∼ Multk (N,p), where θ = p

Probabilistic and Statistical Models
Measures of normal distribution

◮ ”X is normally distributed with parameters µ and σ2”,

notation X ∼ N(µ, σ2), where θ = (µ, σ2)T

◮ Random variable Z (Z -transformation)

Pr(Z = X−µ
σ < x1−α) = 1− α,Z ∼ N(0,1)

◮ Rule ”90− 95− 99”

Pr (a ≤ X ≤ b) = 1− α, where 1− α = 0.90,0.95 and

0.99, a = µ− x1−α/2σ and b = µ + x1−α/2σ

◮ Rule ”68.27− 95.45− 99.73”
Pr (a ≤ X < b) = Pr (X < b)−Pr (X < a) = FX (b)−FX (a),
where a = µ− kσ, b = µ + kσ, k = 1,2 and 3



Probabilistic and Statistical Models
Approximation of binomial distribution by normal distribution

Definition (approximation of binomial distribution by
normal distribution)

If random variable X is binomially distributed with parameter p,

X ∼ Bin(N,p), where θ = p, then if Np > 5 a Nq > 5, where

q = 1− p, then the distribution of random variable X can be

approximated by normal distribution, X ∼ N(Np,Npq), where
θ = (Np,Npq)T .

Table: Examples of minimal N for fixed p

p 0.1 0.2 0.3 0.4 0.5

q 0.9 0.8 0.7 0.6 0.5

N 51 26 17 13 11

Probabilistic and Statistical Models
Approximation of binomial distribution by normal distribution

Example

Let Pr(male) = 0.515 and Pr(female) = 0.485. Let X if the

frequency of males and Y frequency of females. Assuming that

X ∼ Bin(N,p), (a) Pr(X ≤ 3), if N = 5, (b) Pr(X ≤ 5), if N = 10

and (c) Pr(X ≤ 25), if N = 50. Compare the results with normal

approximation X ∼ N(Np,Npq).

Solution

(a) E [X ] = Np = 5× 0.515 = 2.575,E [Y ] = 5× 0.485 = 2.425,
Pr(X ≤ 3) =

∑
k≤3

(
5
k

)
0.515k0.4855−k = 0.793,

Pr(X ≤ 3) = 0.648,N(5× 0.515,5× 0.515× 0.485).
(b) E [X ] = 10× 0.515 = 5.15,E [Y ] = 10× 0.485 = 4.85,
Pr(X ≤ 5) =

∑
k≤5

(
10
k

)
0.515k0.48510−k = 0.586,

Pr(X ≤ 5) = 0.462,N(10× 0.515,10× 0.515× 0.485).
(c) E [X ] = 50× 0.515 = 25.75,E [Y ] = 50× 0.485 = 24.25,
Pr(X ≤ 25) =

∑
k≤25

(
50
k

)
0.515k0.48550−k = 0.471,

Pr(X ≤ 25) = 0.416,N(50× 0.515,50× 0.515× 0.485).

Probabilistic and Statistical Models
Approximation of binomial distribution by normal distribution

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

Bin(5,0.515)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(5,0.515)

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Bin(10,0.515)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(10,0.515)

0 10 20 30 40 50

0
.0

0
.1

0
.2

0
.3

0
.4

Bin(50,0.515)

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(50,0.515)

Figure: Probability function of binomial distribution superiposed by the

density function of normal distribution (p = 0.515; N = 5,10 and 50)

Probabilistic and Statistical Models
Approximation of binomial distribution by normal distribution

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Bin(5,0.1)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(5,0.1)

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Bin(10,0.1)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(10,0.1)

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Bin(50,0.1)

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bin(50,0.1)

Figure: Distribution function of binomial distribution superiposed by

the distribution function of normal distribution (p = 0.515; N = 5,10
and 50)



Probabilistic and Statistical Models
(Univariate) normal distribution

Definition (normal distribution)

Random variable is normally distributed with parameters µ
and σ, i.e. X ∼ N(µ, σ2), where θ = (µ, σ2)T and density is

defined as f (x) = 1√
2πσ2

e
− (x−µ)2

2σ2 , x ∈ R, σ > 0.

Definition (standardised normal distribution)

Random variable is normally distributed with parameters

µ = 0 and σ = 1, i.e. X ∼ N(0,1), where θ = (0,1)T and

density is defined as φ (x) = f (x) = 1√
2π
e−

x2

2 , x ∈ R, σ > 0.

Parameter µ is called mean of X and σ2 the variance of X .

Probabilistic and Statistical Models
Bivariate normal distribution

Definition (bivariate normal distribution)

Random vector (X ,Y )T is normally distributed with

parameters µ and Σ, i.e. (X ,Y )T ∼ N2(µ,Σ), where

µ = (µ1, µ2)
T a Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

θ = (µ1, µ2, σ
2
1, σ

2
2, ρ)T , (x , y)T ∈ R2, µj ∈ R

1, σ2
j > 0, j = 1,2,

ρ ∈ 〈−1,1〉; density is defined as

f (x , y) =
1

A
exp

{

− 1

B

{

(x−µ1)
2

σ2
1

− 2ρ (x−µ1)(y−µ2)
σ1σ2

+ (y−µ2)
2

σ2
2

}

}

,

where A = 2π
√

σ2
1σ

2
2 (1− ρ2), B = 2

(

1− ρ2
)

.

Probabilistic and Statistical Models
Standardised bivariate normal distribution

Definition (bivariate standardised normal distribution)

Random vector (X ,Y )T is normally distributed with

parameters µ and Σ, i.e. (X ,Y )T ∼ N2(µ,Σ), where

µ = (0,0)T a Σ =

(

1 ρ
ρ 1

)

,

θ = (0,0,1,1, ρ)T , (x , y)T ∈ R2, ρ ∈ 〈−1,1〉; density is defined

as

f (x , y) =
1

2π
√

1− ρ2
exp

{

−x2 + 2ρxy + y2

2 (1− ρ2)

}

.

Probabilistic and Statistical Models
Standardised bivariate and multivariate normal distribution

Let x = x1, y = x2 and x = (x1, x2)
T . Then the density can be

rewritten into matrix form:

f (x) =
1

2π(det(Σ))1/2
exp

{

−1

2
xTΣ

−1x

}

.

Let (X1,X2, . . . ,Xk )
T ∼ Nk (µ,Σ) and x is k -dimensional vector,

then the density is equal to

f (x) =
1

(2π)k/2(det(Σ))1/2
exp

{

−1

2
xTΣ

−1x

}

.

Marginal distributions of:

◮ bivariate normal distribution – Xj ∼ N(µj , σ
2
j ), j = 1,2, . . . , k

◮ standardised bivariate normal distribution –

Xj ∼ N(0,1), j = 1,2, . . . , k



Probabilistic and Statistical Models
Bivariate normal distribution – simulation

Simulation of pseudo-random numbers from bivariate

normal distribution:

1. let X1 ∼ N(0,1) and X2 ∼ N(0,1)

2. then (Y1,Y2)
T ∼ N2 (µ,Σ), where Y1 = σ1X1 + µ1

and Y2 = σ2(ρX1 +
√

1− ρ2X2) + µ2

Example

Sumulate pseudo-random numbers from bivariate normal

distribution, where θ = (µ1, µ2, σ
2
1, σ

2
2, ρ)T .

(a) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0; (1) n = 50 and (2)

n = 1000;

(b) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1, ρ = 0.5; (1) n = 50 and (2)

n = 1000;

(c) µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1.2, ρ = 0.5; (1) n = 50 and (2)

n = 1000.

Probabilistic and Statistical Models
Mixture of two bivariate normal distribution

The mixture of two univariate normal distribution is defined

as follows: pN(µ1, σ
2
1)+pN(µ2, σ

2
2), where θ = (µ1, µ2, σ

2
1, σ

2
2)

T

The mixture of two bivariate normal distribution is defined

as follows: pN2 (µ1,Σ1) + (1− p)N2 (µ2,Σ2), where
θ = (µ11, µ12, σ

2
11, σ

2
12, ρ1, µ21, µ22, σ

2
21, σ

2
22, ρ2)

T

Probabilistic and Statistical Models
Binomial distribution

Jacob Bernoulli (1655–1705) – one of the founding fathers of

probability theory.

Definition (binomial distribution)

Let N be number of independent identical (random) Bernoulli

trials Xi , where Xi = 1 is a success (event occurred) and

Xi = 0 is a failure (event did not occur), i = 1,2, . . . ,N. Then

probability of success Pr(Xi = 1) = p and probability of

failure Pr(Xi = 0) = 1− p. Number of successes X =
∑N

i=1 Xi .

The probability that random variable X is equal to x = n

(realisation) is defined as Pr(X = x) =
(

N
x

)

px (1− p)N−x , for
x = 0,1,2, . . . ,N.

Expected value of X is defined as

E [X ] =
∑N

x=0 x Pr(X = x) =
∑N

x=0 x
(

N
x

)

px (1− p)N−x = Np.

Variance of X is defined as Var [X ] =
∑N

x=0 (x − E [X ])2 Pr(X =

x) =
∑N

x=0 (x − Np)2
(

N
x

)

px (1− p)N−x = Np (1− p).

Probabilistic and Statistical Models
Binomial distribution

Reading: Random variable X is binomially distributed with

parameters N an p, where θ = p.

Notation: X ∼ Bin(N,p), θ = p

Do we need to change it? YES.

Why? Due to generalisation.

Equivalently, X ∼ Bin (N,p,1− p), where X = (X1,X2)
T ,

θ = (p,1− p)T , X1 is number of successes, X2 = N − X1 is

number of failures, X1 ∼ Bin (N,p) and X2 ∼ Bin (N,1− p).
Then d

◮ E [X1] = Np, E [X2] = N (1− p),

◮ Var [X2] = Np (1− p) = Var [X1] is independent of p,

◮ Cov [X1,X2] = −Np (1− p) and

◮ Cor [X1,X2] = −1.
Finally, n = (n1,n2)

T a p = (p1,p2)
T , p1 = p and p2 = 1− p.

Then θ = p.



Probabilistic and Statistical Models
Binomial distribution

Example (number of boys)

Number of boys X in families with N children is binomially

distributed, i.e. X ∼ Bin(N,p), where N = 12, number of

families M = 6115 (Geissler 1889). Calculate theoretical

frequencies mn,E . You know that p =
∑N

n=0 nmn

NM
= 0.5192

(weighted average; average of number of families weighted by

number of boys).

Table: Observed and theoretical frequencies (mn,O and mn,E ) of

families with n boys (O = observed, E = expected, theoretical)

n 0 1 2 3 4 5 6 7 8 9 10 11 12

mn,O 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

mn,E 1 12 72 258 628 1085 1367 1266 854 410 133 26 2

Probabilistic and Statistical Models
Multinomial distribution

Definition (multinomial distribution)

Let N be number of independent identical (random) trials and in

each of them J ≥ 2 distinct possible outcomes can occur,

where Xji = 1 is a success (event occurred) and Xji = 0 is a

failure (event did not occur), i = 1,2, . . . ,N, j = 1,2, . . . , J.
Number of successes Xj =

∑N
i=1 Xji , N =

∑J
j=1 Xj . Then

probability of success of i-th outcome in j-th trial is equal to

Pr(Xji = 1) = pj (cell probabilities) and probability of failure

in j-th trial is equal to Pr(Xji = 0) = 1− pj . Let

X = (X1,X2, . . . ,XJ)
T . The probability that random variables Xj

are equal to xj = nj is defined as

Pr(X1 = x1, . . . ,XJ = xJ) =
N!

x1! . . . xJ !
p
x1
1 p

x2
2 . . . pxJ

J
=

N!
∏

j xj !

J
∏

j=1

p
xj
j
.

Probabilistic and Statistical Models
Multinomial distribution

Expected value of X is a vector defined as E [X] = Np.

Covariance matrix of X is defined as

Var [X] = N
(

diag (p)− ppT
)

,

where

(Var [X])ij =

{

Npj(1− pj)) if i = j

−Npipj if i &= j

Marginal distributions are binomial, i.e. Xj ∼ Bin
(

N,pj
)

.

Then

◮ E [Xj ] = Npj ,

◮ Var [Xj ] = Npj
(

1− pj
)

◮ Cov
[

Xi ,Xj

]

= −Npipj
◮ Cor

[

Xi ,Xj

]

=
(

−pipj
)

/
√

pi (1− pi)pj
(

1− pj
)

Probabilistic and Statistical Models
Multinomial distribution

Reading: Random vector X is multinomially distributed with

parameters N and p, where θ = p.

Notation: X ∼ MultJ(N,p).
If J = 2, then Bin (N,p) ≈ Mult2 (N,p)
Realisation of one trial xij could be (1,0, . . . , 0)T or

(0,1, . . . , 0)T .

Example (number of individuals with certain blood type)

Number of individuals X = (X1,X2,X3,X4)
T with certain blood

group is multinomially distributed following Hardy-Wienberg

equilibrium, i.e. X = (X1,X2,X3,X4)
T ∼ Mult4(N,p), where

N = 500 (Katina et al. 2015). Calculate theoretical frequencies

nE ,j .

attributes (groups) 0 A B AB

nO,j 209 184 81 26

nE,j 210 183 80 27



Probabilistic and Statistical Models
Multinomial distribution

Example (number of individuals with certain
socioeconomic status, political philosophy and political
affiliation)

Number of individuals X1, . . . ,X8 with socioeconomic status,

political philosophy and political affiliation is multinomially

distributed, i.e. X = (X1, . . . ,X8)
T ∼ Mult8(N,p), where

p = (p1,p2, . . . , p8)
T and N = 50 (Christensen 1990). Calculate

(a) Var [X1], (b) Var [X3], (c) Cov [X1,X3] and (d) Corr [X1,X3].

Table: 2× 4 contingency table of probabilities pj

D-Li D-C R-Li R-C total

H 0.12 0.12 0.04 0.12 0.4

Lo 0.18 0.18 0.06 0.18 0.6

total 0.30 0.30 0.10 0.30 1.0

Probabilistic and Statistical Models
Multinomial distribution

Notation: (1) socioeconomic status (high – H, low – Lo), (2)

political philosophy (democrat – D, republican – R) a (3) political

affiliation (liberal – Li, conservative – C). Then X1 (H-D-Li), X2

(H-D-C), X3 (H-R-Li), X4 (H-R-C), X5 (Lo-D-Li), X6 (Lo-D-C), X7

(Lo-R-Li) a X8 (Lo-R-C).

Solution:

Var [X1] = 50× 0.12× (1− 0.12) = 5.28
Var [X3] = 50× 0.04× (1− 0.04) = 1.92
Cov [X1,X3] = −50× 0.12× 0.04 = −0.24
Cor [X1,X3] = −0.24/

√
5.28× 1.92 = −0.075

What are the expected frequencies?

Table: 2× 4 contingency table of frequencies Xj

D-Li D-C R-Li R-C

H 6 6 2 6

Lo 9 9 3 9

Probabilistic and Statistical Models
Multinomial distribution

Example (number of individuals with certain eye and hair
colour)

Let X = (X1,X2, . . . ,X12)
T be random vector of number of

individuals with certain eye colour (with levels blue Bl, green Gr,

brown Br) and hair color (with levels blond Blo, light-brown LB,

black Ble, red R), where X1 means Bl-Blo, X2 means Bl-LB, X3

means Bl-Ble, X4 means Bl-R, X5 means Gr-Blo, X6 means

Gr-LB, X7 means Gr-Ble, X8 means Gr-R, X9 means Br-Blo,

X10 means Br-LB, X11 means Br-Ble and X12 means Br-R. Let

X ∼ Mult12(N,p), where N = 6800 (Yule and Kendall 1950).

Table: 3× 4 contingency table of frequencies nj

Blo LB Ble R row sums

Bl 1768 807 189 47 2811

Gr 946 1387 746 53 3132

Br 115 438 288 16 857

column sums 2829 2632 1223 116 6800

Probabilistic and Statistical Models
Product-multinomial distribution

Definition (product-multinomial distribution)

Let Nk be number of independent identical (random) trials and

in each of them J ≥ 2 distinct possible outcomes can occur,

where Xkji = 1 is a success (event occurred) and Xkji = 0 is a

failure (event did not occur), i = 1,2, . . . ,Nk , k = 1,2, . . . ,K ,

j = 1,2, . . . , J. Number of successes Xkj =
∑Nk

i=1
Xkji and

∑K
k=1Nk = N. Then probability of success of kj-th outcome

in i-th trial is equal to Pr(Xkji = 1) = pkj (cell probabilities) and

probability of failure of kj-th outcome in i-th trial is equal to

Pr(Xkji = 0) = 1− pkj . Let Xk = (Xk1,Xk2, . . . ,XkJ)
T si

multinomially distributed with parameters Nk and pk , i.e.

Xk ∼ MultJ (Nk ,pk ), kde θk = pk a pk = (pk1,pk2, . . . , pkJ)
T .

Let realisations of Xk be xk . The xkj = nkj and

nk = (nk1,nk2, . . . , nkJ)
T . Additionally, Xk are independent.



Probabilistic and Statistical Models
Product-multinomial distribution

The probability that random variables Xkj are equal to xkj = nkj
(for all j and k ) is defined as

Pr(Xkj = xkj ,∀k , j) =
K
∏

k=1

Pr(Xkj = xkj ,∀j).

The probability that random variables Xkj are equal to xkj = nkj
(for all j) is defined as

Pr(Xkj = xkj ,∀j) =



Nk !/
J
∏

j=1

xkj !





J
∏

j=1

p
xkj
kj
.

Then

Pr(Xkj = xkj ,∀k , j) =
K
∏

k=1







Nk !/
J
∏

j=1

xkj !





J
∏

j=1

p
xkj
kj



 .

Probabilistic and Statistical Models
Product-multinomial distribution

Reading: Random matrix X is product-multinomially distributed

with parameters N = (N1,N2, . . . ,NK )T and P with the rows pk ,

where θk = pk , k = 1,2, . . . ,K .

Notation: X ∼ ProdMultK (N,p).
If K = 1, then MultJ (N,p ) ≈ ProdMult1 (N,p)
Realisation of one trial xkij could be (1,0, . . . , 0)T or

(0,1, . . . , 0)T .
Then

◮ expected frequencies are equal to Nkpkj ,

◮ within each Xk , variances Var [Xkj ], covariances Cov [Xkj ]
and correlations Cor [Xkj ] are calculated as for multinomial

distribution,

◮ between Xk , e.g. Cov [X1,X2], k = 1,2, are zeroes due to

independence of Xk

Probabilistic and Statistical Models
Product-multinomial distribution

Example (number of individuals with certain blood type)

Let X = (X1,X2)
T , where X1 = (X11,X12,X13,X14)

T is number

of individuals in Košice (Slovakia) with certain blood group,

X2 = (X21,X22,X23,X24)
T is number of individuals in Prague

(Czech Republic) with certain blood group. X is

product-multinomially distributed, i.e. X ∼ ProdMult2(N,P),
where N = (N1,N2)

T , where N1 = 500 and N2 = 400 (Katina et

al. 2015). Calculate theoretical frequencies nE ,kj . Question:

What are the probabilities of having particular blood group in

Prague and Košice?

Table: Observed frequencies of particular blood group in Prague an

Košice

attributes (groups) 0 A B AB

n1j=nPrague,j 209 184 81 26

n2j=nKošice,j 138 147 84 31

Probabilistic and Statistical Models
Product-multinomial distribution

Example (number of individuals with certain
socioeconomic status, political philosophy and political
affiliation)

Number of individuals X = (X1,X2)
T with socioeconomic status,

political philosophy and political affiliation is

product-multinomially distributed, i.e. X ∼ ProdMult2(N,P),
where X1 = (X11,X12,X13,X14)

T are number of individuals with

high socioeconomic status, X2 = (X21,X22,X23,X24)
T number

of individuals with low socioeconomic status,

pk = (p1|k ,p2|k , . . . , pJ|k )
T , pkj = pj|k =

njk
nk
, k = 1,2,

N = (N1,N2)
T , N1 = 30, N2 = 20 (Christensen 1990).

Calculate (a) probabilities pj|k , (b) expected frequencies, (c)

Var [X3|1], (d) Cov and (e) Cov
[

X1|1,X3|2
]

.
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Notation: (1) socioeconomic status (high – H, low – Lo), (2)

political philosophy (democrat – D, republican – R) a (3) political

affiliation (liberal – Li, conservative – C). Then X11 = X1|1
(H-D-Li), X12 = X2|1 (H-D-C), X13 = X3|1 (H-R-Li), X14 = X4|1
(H-R-C), X21 = X1|2 (Lo-D-Li), X22 = X2|2 (Lo-D-C), X23 = X3|2
(Lo-R-Li) a X24 = X4|2 (Lo-R-C).

Solution:

Table: 2× 4 contingency table of probabilities pj|k

D-Li D-C R-Li R-C total

H 0.3 0.3 0.1 0.3 1.0

Lo 0.3 0.3 0.1 0.3 1.0

Probabilistic and Statistical Models
Product-multinomial distribution

Table: 2× 4 contingency table of frequencies nkj

D-Li D-C R-Li R-C total

H 9 9 3 9 30

Lo 6 6 2 6 20

Var(X3|1) = 30× 0.1× (1− 0.1) = 2.7.

Cov
[

X1|2, X3|2

]

= −20× 0.3× 0.1 = −0.6 ,

Cov
[

X1|1,X3|2

]

= 0, due to the independence of X1 and X2.

Probabilistic and Statistical Models
Product-multinomial distribution

Notation: (1) socioeconomic status (high – H, low – Lo), (2)

political philosophy (democrat – D, republican – R) a (3) political

affiliation (liberal – Li, conservative – C). Then X1 (H-D-Li), X2

(H-D-C), X3 (H-R-Li), X4 (H-R-C), X5 (Lo-D-Li), X6 (Lo-D-C), X7

(Lo-R-Li) a X8 (Lo-R-C).

Solution:

Var [X1] = 50× 0.12× (1− 0.12) = 5.28
Var [X3] = 50× 0.04× (1− 0.04) = 1.92
Cov [X1,X3] = −50× 0.12× 0.04 = −0.24
Cor [X1,X3] = −0.24/

√
5.28× 1.92 = −0.075

What are the expected frequencies?

Table: 2× 4 contingency table of frequencies Xj

D-Li D-C R-Li R-C

H 6 6 2 6

Lo 9 9 3 9

Probabilistic and Statistical Models
Poisson distribution

Definition (Poisson distribution)

Let X be random variable characterised by Poisson distribution,

i.e. X (λ), where θ = λ. Then

Pr(X = x) =
λxe−λ

x!
, x = 0,1, . . . ,

where x = n is realisation of X . Then E [X ] = λ and Var [X ] = λ.
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Poisson distribution

Example (Poisson distribution; killing by horse kicks)
Data were published by Russian economist Ladislaus Bortkiewicz in his book

entitled Das Gesetz der keinem Zahlen (The Law of Small Numbers) in 1898.

Let X be the number of corpses with certain number of solders killed by

horse kicks in the Prussian army within one year (von Bortkiewicz 1898; in 10

different army corps; in 20 years, between 1875 and 1894), n be the number

of annual deaths, mn be the number of army corps with particular number of

annual deaths, M =
∑

mn = 10× 20 = 200. Then X ∼ Poiss(λ), where

λ =
∑

n nmn∑
n mn

= 0.61 (weighted average; average of number of army corps

weighted by number of annual deaths).

Table: Observed and theoretical frequencies (mn,O and mn,E ) of

solders killed by horse with n annual deaths over 20 years

n 0 1 2 3 4 5+

mn,O 109 65 22 3 1 0

mn,E 109 66 20 4 1 0

Probabilistic and Statistical Models
Poisson distribution

Example (Poisson distribution; accidents in the factories)

Let X be the number of workers having an accident in the munition

factories in England during First World War (Greenwood and Yule

1920), n be the number of accidents, mn be the number of workers

with particular number of accidents, M =
∑

mn = 647. Then

X ∼ Poiss(λ), where λ =
∑

n nmn∑
n mn

= 0.47 (weighted average; average

of number of workers weighted by number of accidents).

Table: Observed and theoretical frequencies (mn,O and mn,E ) of

workers with n accidents

n 0 1 2 3 4 ≥ 5

mn,O 447 132 42 21 3 2

mn,E 406 189 44 7 1 0

Probabilistic and Statistical Models
Formulations of hypotheses about probability distributions

1. multinomial distribution – example – number of individuals

with certain eye and hair color: Are the rows and columns of a

contingency table independent?

◮ Are the frequencies of individuals with certain eye color

(with levels blue, green, brown) independent of hair color

(with levels blond, light-brown, black, red)?

2. product-multinomial distribution: Are the vectors of frequencies

the same in each row? Are the vectors of frequencies

independent of the row index?

◮ example – number of individuals with certain

socioeconomic status, political philosophy and

affiliation – Are the vectors of frequencies of individuals

(D-Li, D-C, R-Li, R-C) the same for each level of

socioeconomic status (high and low)?
◮ example – blood groups – Is the distribution of the blood

groups (0, A, B, AB) the same in Prague and Košice?

Probabilistic and Statistical Models
Formulations of hypotheses about probability distributions

3. binomial distribution – example – number of boys:

◮ Is the probability of number of boys in the families with 12

boys binomial?
◮ Is the probability of having a boy in the family equal to 0.5?

4. Poisson distribution:

◮ example – killing by horse kick – Is the distribution of

number of corpses with certain number of solders killed by

horse kick Poisson?
◮ example – accidents in the factories – Is the distribution

of number of workers having an accident Poisson?
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Types of contingency tables – multinomial distribution

1× J contingency table of frequencies

outcome 1 outcome 2 . . . outcome J sum

x1 x2 . . . xJ N

1× J contingency table of probabilities

outcome 1 outcome 2 . . . outcome J sum

p1 p2 . . . pJ 1

2× J contingency table of frequencies

outcome 1 outcome 2 . . . outcome J sum

row 1 x11 x12 . . . x1J N1

row 2 x21 x22 . . . x2J N2

2× J contingency table of probabilities

outcome 1 outcome 2 . . . outcome J sum

row 1 p11 p12 . . . p1J p1• "= 1

row 2 p21 p22 . . . p2J p2• "= 1

Probabilistic and Statistical Models
Types of contingency tables – multinomial distribution

K × J contingency table of frequencies

outcome 1 outcome 2 . . . outcome J sum

row 1 x11 x12 . . . x1J N1

row 2 x21 x22 . . . x2J N2

...
...

... . . .
...

...

row K xK1 xK2 . . . xKJ NK

K × J contingency table of probabilities

outcome 1 outcome 2 . . . outcome J sum

row 1 p11 p12 . . . p1J p1• "= 1

row 2 p21 p22 . . . p2J p2• "= 1
...

...
... . . .

...
...

row K pK1 pK2 . . . pKJ pK• "= 1

Probabilistic and Statistical Models
Types of contingency tables – product-multinomial distribution

1× J contingency table of frequencies (≈ multinomial distribution)

outcome 1 outcome 2 . . . outcome J sum

x1 x2 . . . xJ N

1× J contingency table of probabilities (≈ multinomial distribution)

outcome 1 outcome 2 . . . outcome J sum

p1 p2 . . . pJ 1

2× J contingency table of frequencies (≈ multinomial distribution)

outcome 1 outcome 2 . . . outcome J sum

group 1 x11 x12 . . . x1J N1

group 2 x21 x22 . . . x2J N2

2× J contingency table of probabilities

outcome 1 outcome 2 . . . outcome J sum

group 1 p1|1 p2|1 . . . pJ|1 1

group 2 p1|2 p2|2 . . . pJ|2 1
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Types of contingency tables – product-multinomial distribution

K × J contingency table of frequencies (≈ multinomial distribution)

outcome 1 outcome 2 . . . outcome J sum

group 1 x11 x12 . . . x1J N1

group 2 x21 x22 . . . x2J N2

...
...

... . . .
...

...

group K xK1 xK2 . . . xKJ NK

K × J contingency table of probabilities

outcome 1 outcome 2 . . . outcome J sum

group 1 p1|1 p2|1 . . . pJ|1 1

group 2 p1|2 p2|2 . . . pJ|2 1
...

...
... . . .

...
...

group K p1|K p2|K . . . pJ|K 1
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Data structure for 1× J contingency table – multinomial distribution

outcome 1 outcome 2 . . . outcome J sum

x1 1 0 . . . 0 1

x2 0 1 0 1

x3 0 1 0 1

x4 1 0 . . . 0 1
...

...
... . . .

...
...

xN−1 0 0 . . . 1 1

xN 1 0 . . . 0 1

sum= x x1 x2 . . . xJ N

◮ sum of each row is one

◮ sum of all row sums is N

◮ sum of each column is xj , where j = 1,2, . . . , J

◮ sum of all xj , j = 1,2, . . . , J, is N

◮ x = n

Probabilistic and Statistical Models
Data structure for K × J contingency table – (product-)multinomial distribution

outcome 1 outcome 2 . . . outcome J sum

xk1 1 0 . . . 0 1

xk2 0 1 0 1

xk3 0 1 0 1

xk4 1 0 . . . 0 1
...

...
... . . .

...
...

xk,Nk−1 0 0 . . . 1 1

xk,Nk
1 0 . . . 0 1

sum= xk xk1 xk2 . . . xkJ Nk

◮ sum of each row is one

◮ sum of all row sums is Nk

◮ sum of each column is xkj , where j = 1,2, . . . , J

◮ sum of all xkj , j = 1,2, . . . , J, is N

◮ xk = nk , where k = 1,2, . . . ,K

Probabilistic and Statistical Models
Assignments in

Assignment number of boys:

1. Draw probability mass function of number of boys in the families with 12

children?

2. What are the probabilities of having n boys in the family

(n = 1, 2, . . . , 12)? What is the probability of having eight or more boys

in the family? What is the probability of having five to seven boys in the

family?

Assignment killing by horse kick:

1. Draw probability mass function of number of corpses with certain

number of solders killed by horse kick?

2. What are the probabilities of having n annual deaths

(n = 0, 1, 2, 3, 4, 5+)? What is the probability of having one or less

annual deaths?

Assignment accidents in the factories:

1. Draw probability mass function of number of workers having an

accident?

2. What are the probabilities of having n accidents (n = 0, 1, 2, 3, 4, 5+)?

What is the probability of having two or more accidents?

Probabilistic and Statistical Models
Assignments in

Assignment number of individuals with certain socioeconomic status,

political philosophy and affiliation:

1. What is the number of all 2× 4 contingency table with N = 50?
(

n+k−1

k

)

=
(

57

7

)

=
(

57

50

)

= 264385836

choose(57,50)=choose(57,7)

2. What is the probability of getting the following 2× 4 contingency table?

D-Li D-C R-Li R-C

H 5 7 4 6
Lo 8 7 3 10

Pr(X1 = x1,X2 = x2, . . . ,X8 = x8) =
50!

5!7!4!6!8!7!3!10!
0.1250.1270.0440.1260.1880.1870.0630.1810 =

2.332506× 10−6

n<-c(5,7,4,6,8,7,3,10)
p<-c(.12,.12,.04,.12,.18,.18,.06,.18)
dmultinom(x=n,prob=p) ## 2.332506e-06
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Assignments in

Assignment number of individuals with certain socioeconomic status,

political philosophy and affiliation:

3. What is the most probable 2× 4 contingency table and what is the

probability of getting it?

D-Li D-C R-Li R-C

H 6 6 2 6
Lo 9 9 3 9

Pr(X1 = x1,X2 = x2, . . . ,X8 = x8) =
50!

6!6!2!6!9!9!3!9!
0.1260.1260.0420.1260.1890.1890.0630.189 =

1.020471× 10−5

4.375× more than in (2)

n<-c(6,6,2,6,9,9,3,9)
p<-c(.12,.12,.04,.12,.18,.18,.06,.18)
dmultinom(x=n,prob=p) ## 1.020471e-05

4. Draw probability mass function of number of possible 2× 4 contingency

tables with N = 50?

Probabilistic and Statistical Models
Likelihood function

Definition (likelihood function)

For a statistical model F where we expect the data x ∈ R to be

observed, the function L : Θ→ R+ ∪ {0}, called likelihood function

(likelihood), is defined as

L(θ|x) = L(θ, x) = c(x)f (θ, x),

where c ∈ R is independent of θ,

f (θ|x) = f (θ, x) =

n∏

i=1

f (xi , θ).

Likelihood L(θ|x) is used when describing a function of a parameter

given an outcome.

Density (probability mass function) f (xi , θ) = f (xi |θ) is used when

describing a function of the outcome given a fixed parameter value.

Probabilistic and Statistical Models
Likelihood function

The natural logarithm of the likelihood function, called the

log-likelihood, is defined as

ln(L(θ|x)) = l(θ|x) = ln c + ln(f (θ|x)).

◮ The log-likelihood, is more convenient to work with.

◮ We are searching for the maximum of likelihood function.

◮ Because the logarithm is a monotonically increasing

function, the logarithm of a function achieves its maximum

value at the same points as the function itself. Hence the

log-likelihood can be used in place of the likelihood in finding the

maximum.

◮ Finding the maximum of a function involves taking the

(partial) derivative of a function, equaling it to zero, and

solving for the parameter being maximized.

Probabilistic and Statistical Models
Likelihood function

Definition (maximum-likelihood estimate)

The estimate of a parameter θ, θ̂ML = θ̂, called maximum-likelihood

estimate (MLE), is a value which maximises the likelihood function,

i.e.

θ̂ML = arg max
∀θ

L(θ|x) = arg max
∀θ

l(θ|x).

The process of maximisation is called maximum-likelihood

estimation:

◮ the first derivative of log-likelihood function (score

function) S(θ) = ∂

∂θ
l(θ|x),

◮ likelihood equations (score equations) S(θ) = 0,

◮ the second derivative of log-likelihood function ∂
2

∂θ2 l(θ|x),

◮ in the maximum is the second derivative negative and the

curvature in θ̂ is equal to Fisher information

I(θ̂) = − ∂
2

∂θ2 l(θ|x)|θ=θ̂
.
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Likelihood function

◮ The curvature is inversely related to the variance of θ, i.e.
̂
Var [θ̂] = 1/I(θ̂).

◮ Since Xi , i = 1,2, . . . , n are independent, I(θ̂) = ni(θ̂).

Ronald Aylmer Fisher (1890−1962) – English statistician, wrote in

1925:

What has now appeared is that the mathematical concept

of probability is inadequate to express our mental

confidence or diffidence in making such inferences, and

that the mathematical quantity which appears to be

appropriate measuring our order of preference among

different possible populations, does not in fact obey the

laws of probability. To distinguish it from probability, I

have used the term ”likelihood” to designate this quantity.

Probabilistic and Statistical Models
Profile likelihood function

Let θ = (θ1, θ2)
T , where s θ1 is the parameter of interest and θ2 a

nuisance parameter. In some cases, the separation into two such

components can be achieved after suitable reparametrisation.

If θ̂2|θ1
denotes the value of θ2 which maximizes the likelihood (or

log-likelihood) function for the given value of θ1, we define profile

likelihood function

LP(θ1|x) = L((θ1, θ̂2|θ1
)T |x)

and profile log-likelihood function

lP(θ1|x) = l((θ1, θ̂2|θ1
)T |x)

The term ”profile” comes about through thinking of the usual

(log-)likelihood function a s a hill being observed from a viewpoint

with abscissa θ2 = ∞, so that, for any fixed θ1, only the highest value

L((θ1, θ̂2|θ1
)T |x) or l((θ1, θ̂2|θ1

)T |x) is seen.

Probabilistic and Statistical Models
Likelihood function of binomial distribution

Definition (likelihood and log-likelihood function of
binomial distribution)

Let X be binomially distributed with parameters N and θ = p, i.e.

X ∼ Bin(N,p). Realisations of X be x = n. Then the likelihood

function is equal to

L(p|x) =

N∏

i=1

(
N

xi

)
pxi (1− p)

N−xi = px (1− p)
N−x

N∏

i=1

(
N

xi

)
.

Since the product of binomial coefficients is not important in likelihood

maximisation, only the kernel (often called likelihood as well) is used.

Then

L(p|x) ≈ px (1− p)
N−x

.

The log-likelihood function is equal to

l(p|x) = x lnp + (N − x) ln (1− p) .

Probabilistic and Statistical Models
Likelihood function of binomial distribution

Example (maximum-likelihood estimation)

Let X be binomially distributed with parameters N and θ = p, i.e.

X ∼ Bin(N,p). Derive p̂ and V̂ar [p̂].

Solution (partial)

S(p) =
∂

∂p
l(p|x) =

x

p
−

N − x

1− p
,

∂2

∂p2
l(p|x) = −

(
Np̂

)
/p2 − N

(
1− p̂

)
/ (1− p)

2
.

Then

p̂ =
x

N
and V̂ar [p̂] =

p̂(1− p̂)

N
.
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Likelihood function of binomial distribution

Example (maximal likelihood estimates of p)

Generate in pseudo-random variables X ∼ Bin(N,p), where

N = 20. Write -function to calculate (1) likelihood function L(p|x) of

binomial distribution, where x = 2,N = 20, (2) likelihood function

L(p|x) of binomial distribution, where x = 10,N = 20 and (3)

likelihood function L(p|x) of binomial distribution, where

x = 18,N = 20. Repeat the same for log-likelihood function.

Calculate also p̂ using function optimize(). Draw all three

functions in three side-by-side windows with highlighted maxima.

Solution (partial)

l(p|x) = px (1− p)
N−x

, where p ∈ (0,1), x = 2,N = 20

l(p|x) = px (1− p)
N−x

, where p ∈ (0,1), x = 10,N = 20

l(p|x) = px (1− p)
N−x

, where p ∈ (0,1), x = 18,N = 20

Probabilistic and Statistical Models
Likelihood function of binomial distribution
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Figure: Likelihood functions of binomial distribution X ∼ Bin(N,p),
where N = 20
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Figure: Log-likelihood functions of binomial distribution

X ∼ Bin(N,p), where N = 20

Probabilistic and Statistical Models
Likelihood function of multinomial distribution

Definition (likelihood and log-likelihood function of
multinomial distribution)

Let X be multinomially with parameters N and θ = p, i.e.

X ∼ MultJ (N,p). Realisations of Xj be xj = nj . Then the (kernel of)

likelihood function is equal to

L(p|x) =
N∏

i=1

N!
∏J

j=1 xj !

J∏

j=1

p
xji
j ≈

J∏

j=1

p
xj
j

and the log-likelihood function is equal to

l (p|x) =
J∑

j=1

xj lnpj .



Probabilistic and Statistical Models
Likelihood function of multinomial distribution

Example (maximum-likelihood estimation)

Let X be multinomially with parameters N and θ = p, i.e.

X ∼ MultJ (N,p). Derive p̂ and V̂ar [p̂].

Solution (partial)

Let pJ = 1−∑J−1
j=1 pj and p = (p1,p2, . . . , pJ−1)

T

Then

l(p|x) =
J−1∑

j=1

nj ln pj + nJ ln(1−
J−1∑

j=1

pj)

and

(S(p))j =
∂

∂pj
l(p|x) =

nj

pj
− nJ

pJ

as the elements of S(p)). Then

I(p) = − ∂

∂p
S(p) = diag

(
n1

p2
1

,
n2

p2
2

, . . . ,
nJ−1

p2
J−1

)
+

nJ

p2
J

11T .

Probabilistic and Statistical Models
Likelihood function of multinomial distribution

I(p̂) = N

(
diag

(
1

p̂1

,
1

p̂2

, . . . ,
1

p̂J−1

)
+
11T

p̂J

)
.

Then

I(p̂) = N





1
p̂1

+ 1
p̂J

1
p̂J

1
p̂J

. . . 1
p̂J

1
p̂J

1
p̂2

+ 1
p̂J

1
p̂J

. . . 1
p̂J

...
...

...
...

...
1
p̂J

1
p̂J

. . . 1
p̂J

1
p̂J−1

+ 1
p̂J




.

V̂ar [p̂] = I−1(p̂) =
1

N

(
diag

(
p̂
)
− p̂p̂T

)
.

Then

V̂ar [p̂] =
1

N





p̂1(1− p̂1) −p̂1p̂2 . . . −p̂1p̂J−1

−p̂2p̂1 p̂2(1− p̂2) . . . −p̂2p̂J−1

...
...

...
...

−p̂J−1p̂1 −p̂J−1p̂2 . . . p̂J−1(1− p̂J−1)




.
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Figure: Log-likelihood function of multinomial (trinomial) distribution

Probabilistic and Statistical Models
Likelihood function of Poisson distribution

Definition (likelihood and log-likelihood function of Poisson
distribution)

Let X be distributed as Poisson with parameter θ = λ, i.e.
X ∼ Poiss(λ). Realisations of Xj be xj = nj . Then the (kernel of)

likelihood function is equal to

L (λ|x) =

N∏

i=1

λxie−λ

xi !
≈ λ

∑N
i=1 xie−Nλ

and the log-likelihood function is equal to

l (λ|x) =

N∑

i=1

xi lnλ− Nλ.

In general, L(λ|x) =
∏

n p
mn
n , where pn = Pr(X = n) = e−λλn/n! and

l(λ|x) = −λ
∑

n mn +
∑

n nmn lnλ.
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Likelihood function of Poisson distribution

Example (maximum-likelihood estimation)

Let X be distributed Poisson with parameter θ = λ, i.e. X ∼ Poiss(λ).

Derive λ̂ and
̂
Var [λ̂].

Solution (partial)

S(λ) =
∂

∂λ
l (λ|x) =

∑N
i=1 xi

λ
− N,

∂2

∂λ2
l (λ|x) = −

∑N
i=1 xi

λ2
.

Then

λ̂ =

∑N
i=1 xi

N
= x and

̂
Var [λ̂] =

x

N

In general notation, λ̂ =
∑

n nmn∑
n mn

.
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Likelihood function of Poisson distribution

Example (maximal likelihood estimates of λ)

Write -function to calculate likelihood function L(λ|x) and
log-likelihood function l(λ|x) of Poisson distribution X ∼ Poiss(λ) for

horse kick data. Calculate also λ̂ using function optimize(). Draw
both functions in two side-by-side windows with highlighted maximum.

Solution (partial)

l(λ|x) = −λ
∑

n mn +
∑

n nmn lnλ, where λ ∈ (0,2)
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Likelihood function of Poisson distribution
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Figure: Likelihood function L(λ|x) (left) anf log-likelohood function

l(λ|x) of Poisson distribution X ∼ Poiss(λ) for horse kick data
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Assignments in

Assignment number of boys:

Calculate p̂ (the probability of having a boy in a family) and V̂ar [p̂]
(the variance probability of having a boy in a family).

Assignment killing by horse kick:

Calculate λ̂ (the mean number of annual deaths) and
̂
Var [λ̂] (the

variance of mean number of annual deaths).

Assignment accidents in a factory:

Calculate λ̂ (the mean number of accidents in a factory) and
̂
Var [λ̂]

(the variance of mean number of accidents in a factory).
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Assignments in

Assignment blood groups:

In Prague and Košice, calculate p̂ (the probabilities of having certain

blood group in particular city) and V̂ar [p̂] (the covariance matrix of

probability of having certain blood group in particular city).

Assignment eye and hair color:

Calculate p̂ (the probabilities of having certain eye and hair color) and

V̂ar [p̂] (the covariance matrix of probability of having certain eye and

hair color).

Probabilistic and Statistical Models
Likelihood function of normal distribution

Definition (likelihood and log-likelihood function of normal
distribution)

Let X be distributed normally with parameter θ = (µ, σ2)T , i.e.

X ∼ N(µ, σ2). Realisations of Xi be xi . Then the likelihood function

is equal to

L(θ|x) =

n∏

i=1

1√
2πσ

exp

(
−1

2

(
xi − µ

σ

)2
)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

(
n∑

i=1

x2
i − 2µ

n∑

i=1

xi + nµ2

))

and the log-likelihood function is equal to

l(θ|x) = −n

2
ln(2π)− n

2
lnσ2 − 1

2σ2

n∑

i=1

(xi − µ)
2
.
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Likelihood function of normal distribution

Example (maximum-likelihood estimation)

Let X be distributed normally with parameter θ = (µ, σ2)T , i.e.

X ∼ N(µ, σ2). Derive θ̂ = (µ̂, σ̂2)T and
̂
Var [θ̂] = Σ̂.

Solution (partial)

S1(θ) =
∂

∂µ
l(θ|x) =

1

σ2

n∑

i=1

(xi − µ),

S2(θ) =
∂

∂σ2
l(θ|x) = − n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ)2.

Then

µ̂ = x =
1

n

n∑

i=1

xi , σ̂
2 =

1

n

n∑

i=1

(xi − µ̂)2, and I(θ̂) =

(
n
σ̂2 0

0 n
2σ̂4

)
.
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Likelihood function of normal distribution

Example (maximal likelihood estimates of µ and σ2)

Generate in pseudo-random variables X ∼ N(µ, σ2), where µ = 4,

σ2 = 1 and n = 1000. Write -function to calculate (1) (profile)

likelihood function LP(µ|x) of normal distribution for generated data

X , (2) (profile) likelihood function LP(σ2|x) of normal distribution for

generated data X , and (3) likelihood function L(θ|x) of normal

distribution for generated data X , where θ = (µ, σ2)T . Repeat the

same for log-likelihood function. Calculate also MLEs using functions

optimize() and optim(). Draw all three functions in three

side-by-side windows with highlighted maxima.

Solution (partial)

lP(µ|x) = − n
2

ln(2π)− n
2

lnσ2
1 − 1

2σ2
1

(∑n
i=1 x

2
i − 2µ

∑n
i=1 xi + nµ2

)
,

where µ ∈ (2,6), σ̂µ = 1;

lP(σ2|x) = − n
2

ln(2π)− n
2

lnσ2 −
∑n

i=1(xi−µ1)
2

2σ2 , where

µ̂σ = 4, σ ∈ (0.5,1.5);

l(θ|x) = − n
2

ln(2π)− n
2

lnσ2 −
∑n

i=1(xi−µ)2

2σ2 , where µ ∈ (2,6) and

σ ∈ (0.5,1.5).
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Likelihood function of normal distribution

1 n <- 1000
2 # Profile likelihood for mu
3 sigma.mu <- 1
4 x <- rnorm(n,4,sigma)
5 "negloglikemu" <- function(mu){n/2*log(2*pi)
6 +n/2*log(sigma.muˆ2)+(sum(xˆ2)-2*mu*sum(x)+n*muˆ2)/(2*

sigma.muˆ2)}
7 OPTmu <- optimize(negloglikemu,c(2,6),maximum=FALSE)
8 OPTmu$minimum # 3.987524
9 # Profile likelihood for sigmaˆ2

10 mu.sigma <- 4
11 "negloglikesigma" <- function(sigma2){n/2*log(2*pi)
12 +n/2*log(sigma2)+sum((x-mu.sigma)ˆ2)/(2*sigma2)}
13 OPTsigma <- optimize(negloglikesigma,c(0.5,1.5),maximum=FALSE)
14 OPTsigma$minimum # 0.9630124
15 # Likelihood for mu and sigmaˆ2
16 "negloglike" <- function(theta){(n/2)*log(2*pi)
17 +(n/2)*log(theta[2])+(1/(2*theta[2]))*sum((x-theta[1])ˆ2)}
18 OPTboth <- optim(c(3,0.5),negloglike,method="Nelder-Mead",
19 hessian=TRUE)
20 OPTboth$parameter # 3.9875376 0.9627521
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Figure: Profile likelihood functions (left, middle) and likelihood

function (right) of normal distribution X ∼ N(µ, σ2), where

µ = 4, σ2 = 1 and n = 1000; all functions multiplied by suitable

constant, here 10−4L(·)
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Figure: Profile log-likelihood functions (left, middle) and log-likelihood

function (right) of normal distribution X ∼ N(µ, σ2), where

µ = 4, σ2 = 1 and n = 1000; all functions are multiplied by suitable

constant, here exp(10−4L(·))
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Approximation of likelihood function

Definition (relative likelihood and log-likelihood function)

Relative likelihood function is defined as

L(θ|x) =
L(θ|x)
L(θ̂|x)

and relative log-likelihood function as

lnL(θ|x) = ln
L(θ|x)
L(θ̂|x)

.

◮ It is often useful that likelihood function could be approximated

by a quadratic function.

◮ But additionally to the location of maxima of likelihood function,

we need the curvature around maximum.

◮ Since the log-likelihood, is more convenient to work with, we

need a quadratic approximation of log-likelihood function.

Probabilistic and Statistical Models
Approximation of likelihood function

Definition (Taylor polynomial of order r )

if a function g(x) has derivatives of order r , that is, g(r)(x) = ∂r

∂x r g(x)
exists, then for any constant a, theTaylor polynomial of order r

about a is

Tr (x) =
r∑

j=0

g(j)(a)

j!
(x − a)j .

In practical statistical situations we assume that the remainder

g(x)−Tr (x) converges to zero as n increases, therefore we are going

to ignore it. There are many explicit forms, one of the most useful is

g(x)− Tr (x) =

∫ x

a

g(r+1)(t)

r !
(x − t)rdt .

If g(r)(a) = ∂r
∂x r g(x)|x=a exists, then

lim
x→a

g(x)− Tr (x)

(x − a)r
= 0.

Probabilistic and Statistical Models
Approximation of likelihood function

The quadratic approximation of log-likelihood function about θ̂
defined as

l(θ|x) ≈ l(θ̂|x) + S(θ̂)(θ − θ̂)− 1

2
I(θ̂)(θ − θ̂)2,

The quadratic approximation of relative likelihood function about

θ̂ is defined as

lnL(θ|x) = ln
L(θ|x)
L(θ̂|x)

= l(θ|x)− l(θ̂|x) ≈ −1

2
I(θ̂)(θ − θ̂)2.

It is often useful to visualise a derivative of the quadratic

approximation S(θ) ≈ −I(θ̂)(θ − θ̂) or

−I−1/2(θ̂)S(θ) ≈ I1/2(θ̂)(θ − θ̂), where −I−1/2(θ̂)S(θ) is visualised

against I1/2(θ̂)(θ − θ̂). If the quadratic approximation is correct, this

should be a line with slope equal to one.
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Figure: Relative binomial log-likelihood, its quadratic approximation

and linearity of score function



Probabilistic and Statistical Models
Numerical maximisation of likelihood function

Isaac Newton (1643−1727) and Joseph Raphson (1648−1715).

Definition (Newton-Raphson method)

Having quadratic approximation of log-likelihood function about

θ0

l(θ|x) ≈ l(θ0|x) + S(θ0)(θ − θ0)−
1

2
I(θ0)(θ − θ0)

2

or linear approximation of score function about θ0

S(θ) ≈ S(θ0)− I(θ0)(θ − θ0),

the numerical maximisation can be done via iterative function

θ0 +
S(θ0)

I(θ0)
.

Probabilistic and Statistical Models
Numerical maximisation of likelihood function

The iterative process is defined as follows:

1. initialisation step – starting point θ(0), where I(θ(0)) �= 0,

2. updating equations – iteration of

θ(i) = θ(i−1) +
S(θ(i−1))

I(θ(i−1))
,

where I(θ(i−1)) �= 0, pre i = 1,2, . . .

3. stopping rule based on absolute convergence criteria – until

|l(θ(i)|x)− l(θ(i−1)|x)| < ǫ, where the threshold ǫ is sufficiently

small

Geometrical interpretation: θ(i) is a crossing point of tangent of score

function S(·) in the point [θ(i−1),S(θ(i−1))] with x-axis.

In :

◮ optimize(f,interval,maximum= FALSE, tol,...)

◮ Newton-Raphson method is combined here with golden section

method and successive parabolic interpolation to speed up

the convergence.

Probabilistic and Statistical Models
Numerical maximisation of likelihood function

Definition (multivariate Newton-Raphson method)

Having quadratic approximation of log-likelihood function about

θ0

l(θ|x) ≈ l(θ0|x) + S(θ0)(θ − θ0)−
1

2
(θ − θ0)

TI(θ0)(θ − θ0)

or linear approximation of score function about θ0

S(θ) ≈ S(θ0)− I(θ0)(θ − θ0).

the numerical maximisation can be done via iterative function

θ0 + (I(θ0))
−1S(θ0).

Probabilistic and Statistical Models
Numerical maximisation of likelihood function

The iterative process is defined as follows:

1. initialisation step – starting point θ(0), where I(θ(0)) �= 0,

2. updating equations – iteration of

θ(i) = θ(i−1) + (I(θ(i−1)))−1S(θ(i−1)),

where I(θ(i−1)) �= 0, pre i = 1,2, . . .

3. stopping rule based on absolute convergence criteria – until

|l(θ(i)|x)− l(θ(i−1|x)| < ǫ, where the threshold ǫ is sufficiently

small

In :

◮ optim(par,fn,gr,method,control,hessian
=FALSE,...)

◮ Newton-Raphson method is often modified – Fisher scoring

method, quasi Newton method, Broyden-Fletcher-

Goldfarb-Shannon (BFGS) method
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Numerical maximisation of likelihood ≈ minimising negative log-likelihood

Nelder-Mead method (method of simplexes) – the idea of ”jumps” across

triangles defined by the points θ
(i−1)
1 , θ

(i−1)
2 , θ

(i−1)
3 , where

l(θ
(i−1)
1 |x) < l(θ

(i−1)
2 |x) < l(θ

(i−1)
3 |x). We are substituting point θ

(i−1)
1 with a

”better” point θ
(i)
1 , where l(θ

(i)
1 |x) < l(θ

(i−1)
1 |x). Then new point is defined

based on reflection (point symmetry), contraction or extrapolation

(expansion) as

1. reflection – z1 = θ
(i)
1 = θ

(i−1)
23 + 1

(

θ
(i−1)
23 − θ

(i−1)
1

)

,

2. reflection & expansion – z2 = θ
(i)
1 = θ

(i−1)
23 + 2

(

θ
(i−1)
23 − θ

(i−1)
1

)

,

3. contraction A – z3 = θ
(i)
1 = θ

(i−1)
23 + 1

2

(

θ
(i−1)
23 − θ

(i−1)
1

)

,

4. contraction B – z4 = θ
(i)
2 = θ

(i−1)
1 + 1

2

(

θ
(i−1)
2 − θ

(i−1)
1

)

and

z5 = θ
(i)
3 = θ

(i−1)
1 + 1

2

(

θ
(i−1)
3 − θ

(i−1)
1

)

where θ
(i−1)
23 =

θ
(i−1)
2 +θ

(i−1)
3

2
, i.e. the mid-point of the line defined by the points

θ
(i−1)
2 and θ(i−1). If l(θ

(i)
1 |x) < l(θ

(i−1)
1 |x) then new triangle is defined with

θ
(i)
1 , θ

(i−1)
2 , θ

(i−1)
3 for (1) to (3). Otherwise new triangle is θ

(i−1)
1 , θ

(i)
2 , θ

(i)
3 .
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Figure: Demonstration of Nelder-Mead method or minimising the

function ((x − y)2 + (x − 2)2 + (y − 3)4)/10, number of iterations is 49
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Figure: Demonstration of Nelder-Mead method or minimising the

function ((x − y)2 + (x − 2)2 + (y − 3)4)/10, number of iterations is 49


