Secure programming techniques
and approaches |

Defence in depth

PA193 — Secure coding /

You need this.

Petr Svend o~
Zjerné\lielg ihz C R */ CS
Centre for Research on

Faculty of Informatics, Masaryk University, Brno, CZ Cryptography and Security

www.fi.muni.cz/crocs

CR®CS

Defence in depth

* Code fails. We have to take it as a fact. All code
has a nonzero likelihood of containing one or more
vulnerabilities.

— We have seen buffer overflow examples

* You need to change your outlook from "my code is
very good quality" to "though my code is the best it
can be with today's knowledge, it likely still has
security defects.”

— Michael Howard, Attack Surface (MSDN)

www.fi.muni.cz/crocs

CR& CS

Defence in depth: Definition (Wikipedia)

* Non-IT: “Defence in depth (also known as deep or elastic
defence) is a military strategy; it seeks to delay rather than
prevent the advance of an attacker, buying time and causing
additional casualties by yielding space.”

« |T: “Defence in depth is an information assurance concept
in which multiple layers of security controls (defence) are
placed throughout an IT system. Its intent is to provide
redundancy in the event a security control fails or a
vulnerability is exploited that can cover aspects of personnel,
procedural, technical and physical for the duration of the
system's life cycle.”

www.fi.muni.cz/crocs

CR& CS

Defence in depth

* |t is an approach/concept/strategy

You have to apply it in your concrete project
This lecture will give you some hints

You have to select appropriate measures
You have to think as an attacker

www.fi.muni.cz/crocs

CR& CS

Basic concepts

« Simplicity
— Less things can go wrong
— Fewer possible inconsistencies
— Code is easier to understand
* Restriction
— Minimize access (rights)
— Inhibit communication

www.fi.muni.cz/crocs

CR& CS

Basic concepts in more details

Simplicity

— keep it simple (stupid) - KISS
Compartmentalization

— Principle of least privilege

— Minimize needed trust
Defence in depth

— Use more than one security mechanism
— Secure the weakest link

— Fail securely

Work in team

— Do not reinvent wheel

— Code review

www.fi.muni.cz/crocs

CR& CS

Compartmentalization

* Divide system into modules
— Each module serves a specific purpose
— Different modules will have different access rights
— The access rights are related to activities

 Example:
1. Access to files
2. Read user or network input
3. Execute privileged instructions (under root UID)
* Real example:
— Apache vs. suEXEC

www.fi.muni.cz/crocs

CR& CS

SUEXEC - example

« User “Alice” has a website including some CGl scripts in her
own public_html folder, which can be accessed by
http://server/~alice.

- Bob now views Alice's webpage, which requires Apache to
run one of these CGI scripts.

 |nstead of running all scripts as “wwwrun”, the scripts in
/home/alice/public_html will be wrapped using suEXEC and
run with Alice's user ID resulting in higher security and
eliminating the need to make the scripts readable and
executable for all users or everyone in the "wwwrun" group.

www.fi.muni.cz/crocs

CR& CS

Least Privilege

* A subject should be given only those privileges
necessary to complete its task

— Function, not identity, controls
— Rights added as needed and discarded after use (!)
* The original formulation from Jerome Saltzer

— “Every program and every privileged user of the system
should operate using the least amount of privilege
necessary to complete the job.”

« Dynamic assignments of privileges was later
discussed by Roger Needham.

www.fi.muni.cz/crocs

CR& CS

Least Privilege - example

* On UNIX-based systems binding a program to a port number
<1024 requires root privilege.

— Let's ignore modern ‘capabilities’” at this moment

« Many internet servers listening on well known ports (like webserver
on port 80, mailserver on port 25 etc.) need to be run with root
priviledge.

* As soon as the port is bound the process should relinquish the root
privilege as it is typically not needed anymore.

« Many programs keep running with the root privileges.

— After a successful attack against the process the attacker receives the
power of root

— “Sendmail” was well known for problems of this kind
— Visual Studio required Admin privileges for long time

www.fi.muni.cz/crocs

CR& CS

Minimize needed trust

e Minimize trust relationships

* Clients, servers should not trust each other
— all can get hacked
— can be manipulated by users
* Trusted code should not call untrusted code
* Do not trust the input (!)
— Separate lecture on input validation will follow
* Do not trust the communication channel
— Use encryption, data authentication etc.
— Separate lecture on secure channel will follow

www.fi.muni.cz/crocs

CR®CS

Example: Web security

« Web server + web client

» Simple HTML form (FORM, INPUT, TEXT,
MAXLENGTH, ...)

 Validity of fields checked by Javascript

www.fi.muni.cz/crocs

CR®CS

Example: Web security (2)

Steet::: | |

zp: | |

City:” | |
Country: |
|

|

|

ID number:
VAT number:

PPN TN o

306 <div clazsz="lagkel field pair'><lakel for="stat">Country:</lakel’> <input
tyvpe="text" name="gtat" id="stat">< div>

307 <div clazz="lagkel field pair'><lakel for="ic">ID number:</lakel’> <input
tyvpe="text" maxlength="10" npame="ig" id="ic" »<Sdive

308 <div claza="lakbel il pairs<label for="dic">VAT nmumber:«</lakbel> <input

rame="dic" id="dic"sg/ dive

309 <div clasa="] 1r"><label for="kontakt oscba">Contact

person:</label>{input type="text" name="kontakt osckba" id="kontakt oscba"></div>
310 <div clazz="label field pair"><label for="kontakt email">Email:</label> <input
type="text" name="kontakt email" id="kontakt email"></ div>

function kontrolal()

document.mkb.ulice.value == "!

if (document . .mkkb.organizace.value == document .mkb.mesto.value ==
document .mkb.psc.value == '! document .mkb. jmenol.value == '’ document .mkb.prijmenil.value ==
document .mkb.emaill.value == document ..mklb.registracel.value == 0]

window.alert ('Manatory fields were left blank...'):

www.fi.muni.cz/crocs

CR& CS

Example: Web security (3)

The server cannot trust that the input received from
the web browser will be correct with respect to the
limitations specified

— E.g. MAXLENGTH attribute of the INPUT fields

— E.g. values will be check by the Javascript functions

It is easy to avoid these checks
— Disable Javascript
— Send the “filled” form directly

— Tools (e.g. python request
module)

www.fi.muni.cz/crocs

CR& CS

Fail-Safe Defaults

« Default action is to deny access
 Blacklist & Whitelist

« Example: firewall
— Default action is to drop packets

— The administrator configures the firewall to allow only the
packet types deemed acceptable though.

« Example: input filtering
— E.g. HTML tags in blog posts

www.fi.muni.cz/crocs

CR& CS

Example - Blacklisting of HTML

* E.g. blocking the tags
— ‘applet’, ‘body’, ‘bgsound’, ‘base’, ‘basefont’, ‘embed’,
‘frame’, ‘frameset’, ‘head’, ‘html’, ‘id’, ‘iframe’, ‘ilayer’,
‘layer’, ‘link’, ‘meta’, ‘name’, ‘object’, ‘script’, ‘style’, ‘title’,
‘xml’
* A new version of HTML arrives (e.g. HTML5)
— New tags (like <audio>, <video>, ...)
— New attribues (like formaction of <input>,...)
« Syntax errors

— How to recover from syntax errors

www.fi.muni.cz/crocs

CR& CS

Fail-safe vs. Falil-secure

+ Fail-safe means that a device will not endanger
Ives or properties when it fails.

 Fail-secure means that access or data will not fall
into the wrong hands in a failure.

« Example: if a building catches fire, fail-safe systems
would unlock doors to ensure quick escape and
allow firefighters inside, while fail-secure would lock
doors to prevent unauthorized access to the
building.

www.fi.muni.cz/crocs

CR& CS

Failing securely (1)

* What's wrong with the following code?

DWORD dwRet = IsAccessAllowed(...);

if (dwRet == ERROR_ACCESS DENIED) {
/I Security check failed.
/I Inform user that access is denied.

} else {
/I Security check OK.

}

www.fi.muni.cz/crocs

CR®CS

Failing securely (2)

 This is a more secure alternative.
e Got it now?

DWORD dwRet = DWORD dwRet = IsAccessAllowed(...);
IsAccessAllowed(...);
if (dwRet == if (dwRet == NO_ERROR) {
ERROR_ACCESS_DENIED) { /] Secure check OK

/[Perform task.

Il Security check failed.

/I Inform user that access is } else { | |

denied. // Security check failed.

} else { /[Inform user that access is denied.
/I Security check OK. }

}

www.fi.muni.cz/crocs

CR& CS

FreeBSD-SA-01:56

Il. Problem Description

The addition of a flawed check for a numeric result during reverse DNS
lookup causes tcp_wrappers to skip some of its sanity checking of DNS
results. These sanity checks are only enabled by the 'PARANOID' ACL
option in the configuration file, and simply weaken the 'PARANOID'
host checks to the level of assurance provided by the regular host
ACLs.

lI. Impact

An attacker that can influence the results of reverse DNS lookups can
bypass certain tcp_wrappers PARANOID ACL restrictions by impersonating
a trusted host. Such an attacker would need to be able to spoof

reverse DNS lookups, or more simply the attacker may be the

administrator of the DNS zone including the IP address of the remote

host.

www.fi.muni.cz/crocs

CR& CS

FreeBSD-SA-01:56

« The patch that is fixing the bug:

http://ftp.sunet.se/pub/security/vendor/freebsd/patches/SA-01:56/tcp_wrappers.patch

--- contrib/tcp_wrappers/socket.c2000/09/25 00:41:55 1.5
+++ contrib/tcp_wrappers/socket.c 2001/07/04 20:16:18 1.6
Q@@ -222,7 +222,7 @@
hints.ai_family = sin->sa_family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = Al_PASSIVE | Al CANONNAME | Al NUMERICHOST;
- if ((err = getaddrinfo(host->name, NULL, &hints, &res0) == 0)) {
+ If ((err = getaddrinfo(host->name, NULL, &hints, &res0)) == 0) {
freeaddrinfo(res0);
tcpd_warn("host name/name mismatch: "
"reverse lookup results in non-FQDN %s",

www.fi.muni.cz/crocs

CR& CS

FreeBSD-SA-11:09.pam_ssh

|. Background

The PAM (Pluggable Authentication Modules) library provides a flexible framework for user
authentication and session setup / teardown. It is used not only in the base system, but also by a
large number of third-party applications.

The base system includes a module named pam_ssh which, if enabled, allows users to authenticate
themselves by typing in the passphrase of one of the SSH private keys which are stored in encrypted
form in the their .ssh directory. Authentication is considered successful if at least one of these keys
could be decrypted using the provided passphrase.

By default, the pam_ssh module rejects SSH private keys with no passphrase. A "nullok" option
exists to allow these keys.

[I. Problem Description

The OpenSSL library call used to decrypt private keys ignores the passphrase argument if the
key is not encrypted. Because the pam_ssh module only checks whether the passphrase
provided by the user is null, users with unencrypted SSH private keys may successfully
authenticate themselves by providing a dummy passphrase.

. Impact

If the pam_ssh module is enabled, attackers may be able to gain access to user accounts
which have unencrypted SSH private keys.

www.fi.muni.cz/crocs

200095 188344

Failing securely

Do not expose system internals even in case of errors
— Stack traces

— Internal errors
— Paths

T = = T T -

2013-01-08 10:40:5&,295 ERBOR [securecomputing.smartfilter. logparsing.LogBudit] {(LoglBudit[1002]) Failed to process persisted da
EOFException

Jjava.io.

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

java.ioc.ObjectInputStreamiBlockDatalnputStream. peekByte (CbjectInputStream. java:-2554)
java.ioc.ObjectInputStream.readfbjectl (CbjectInputStream. java:lZ37)
java.io.ObjectInputStream.defaultReadFields (ObjectInputStream. java:1947)
java.ioc.CbkjectInputStream.readSeriallata (CbjectInputStream. java:1871)
java.io.ObjectInputStream. readfrdinarylibject (ObjectInputStream. java:1753)
java.ioc.ObjectInputStream. readfbjectl (CbjectInputStream. java:l13Z9)
java.io.ObjectInputStream.defaultReadFields (ObjectInputStream. java:1947)
java.ioc.CbkjectInputStream.readSeriallata (CbjectInputStream. java:1871)
java.io.ObjectInputStream. readfrdinarylibject (ObjectInputStream. java:1753)
java.ioc.ObjectInputStream. readfbjectl (CbjectInputStream. java:l13Z9)
java.io.ObjectInputStream.readfbject (ObjectInputStream. java:351)

securecomputing. smartfilter.logparsing.process . LogParsingJob. loadPersistedlata (LogParsingJok. java:508)
securecomputing.smartfilter.logparsing.process _LogParsingJob.runlt (LogParsingJok.java:235)
securecomputing.smartfilter.logparsing.process _LogParsingJob. run (LogParsingJob. java:2Z03)
java.util.concurrent.ThreadPoolExecutorsWorker.runTask (ThreadPoolExecutor. java: 88€)
java.util.concurrent ThreadPoolExecutorsWorker run (ThreadPoolExecutor. java:308)
java.lang.Thread.run{Thread.java:&l3)

Call Stack
Time Memory Function
100077 66696 {main})

mchde omce

{ Cxampe itdoc s irdownload mchsds functions php')

30,0095 1BE496 session start ()

Location

Mogin php:0
Mlogn php:3
.functions. php: 2

www.fi.muni.cz/crocs

CR& CS

Do not expose system internals in case of errors

WordPress database error:

[Table './serkey/posts' is marked as crashed and should be repaired]
SELECT MAX(id) FROM posts;

WordPress database error:
[Table "./serkey/posts' is marked as crashed and should be repaired]
SELECT * FROM posts WHERE id IN (");

www.fi.muni.cz/crocs

CR& CS

Failing securely

— Many vulnerabilities are related to
 error handling,
« debugging,
 testing features,
* error messages.
— Make sure you handle errors
— Test
» Test if your system fails securely as you expect
« There may be nontrivial consequences, relationships, ...

www.fi.muni.cz/crocs

CR& CS

KISS principle

« Keep it as simple as possible

— KISS — Keep is simple stupid

— “Invented” in 1960s in aviation industry
« Simpler means less can go wrong

— And when errors occur, they are easier to understand
and fix

« Pay attention to interfaces and interactions

www.fi.muni.cz/crocs

CR& CS

Keep It Simple

* Don’t add unnecessary features
— Additional functionality means more ways to attack
« Use simple algorithms that are easy to verify
— Premature optimizations
— ‘Hacks’ in code make it
* More difficult to understand
» More difficult to maintain

www.fi.muni.cz/crocs

CR& CS

FreeBSD-SA-11:08.telnetd

Il. Problem Description

When an encryption key is supplied via the TELNET protocol, its length
Is not validated before the key is copied into a fixed-size buffer.

l1I. Impact

An attacker who can connect to the telnetd daemon can execute arbitrary
code with the privileges of the daemon (which is usually the "root"
superuser).

V. Workaround

No workaround is available, but systems not running the telnet daemon
are not vulnerable.

www.fi.muni.cz/crocs

CR& CS

KISS principle — Best practices

» Break down your tasks into sub tasks that you think
should take no longer than 4-12 hours to code.

* Break down your problems into many small problems.
Each problem should be able to be solved within one or
a very few classes.

« Keep your methods small, each method should never
be more than 30-40 lines. Each method should only
solve one little problem.

» Solve the problem, then code it. Not the other way
around.

* Test driven development
— Prepare tests first

www.fi.muni.cz/crocs

CR& CS

Mediation i1s difficult

« Check permissions at every access

 Quite often done only with the first action
— File open

* |f permissions change after the access could be
unauthorized

» Mediator with higher privileges
— Kernel
— Services (daemons running as root)

www.fi.muni.cz/crocs

CR& CS

—-reeBSD-SA-08:03.sendfile

Il. Problem Description

When a process opens a file (and other file system objects, such as
directories), it specifies access flags indicating its intent to read,
write, or perform other operations. These flags are checked against
file system permissions, and then stored in the resulting file
descriptor to validate future operations against.

The sendfile(2) system call does not check the file descriptor access
flags before sending data from a file.

I, Impact

If a file is write-only, a user process can open the file and use
sendfile to send the content of the file over a socket, even though the
user does not have read access to the file, resulting in possible
disclosure of sensitive information.

www.fi.muni.cz/crocs

CR& CS

“Security by Obscurity” is NOT secure

“Security by Obscurity” vs. “Open design”

« Security should not depend on secrecy of design or
Implementation

« “Security by Obscurity” does not work
— Reverse engineering
— Disassembler: machine code to assembly language
— Discomplier: machine code to higher-level language
« Assume an attacker knows everything you know
— Insider attacks are common

— If attacker has 1-in-a-million chance, and there are a million
attackers, you are out of luck

www.fi.muni.cz/crocs

CR& CS

Security by Obscurity vs. Open Design

* Open design does not mean that the full source
code must be available to everyone

* Logically crypto keys, passwords, ... must remain
secret ©

www.fi.muni.cz/crocs

CR& CS

Security by obscurity

- Examples where security by obscurity did not work
— GSM encryption algorithms: A5/1, A5/2, ...
— WEP encryption
— CSS encryption on DVDs
— Mifare classic smartcards
— Car remotes
« Keeloq

www.fi.muni.cz/crocs

CR& CS

Separation of Privilege

» Require multiple conditions to grant privilege
— Separation of duty

 Failures are seen frequently

— Edward Snowden (2013)
» US lost classified information
* Now asylum seeker in Russia

— Unauthorized trading in UBS (Kweku Adoboli, 2010)
* Loss of 2 billion USD

— Fraudulent trades Societe Generale (Jerome Kerviel, 2008)
* Loss of 7.2 billion USD

www.fi.muni.cz/crocs

CR& CS

Do not share

 Share the minimal number of mechanisms
— Information can flow along shared channels
— Covert channels

 Use isolation
— Virtual machines
— Sandboxes

www.fi.muni.cz/crocs

CR& CS

Vulnerability Note VU#911878 (CVE-2005-0109)

Description

Hyper-Threading (HT) Technology allows two series of instructions to run simultaneously and
independently on a single processor. With Hyper-Threading Technology enabled, the system
treats a physical processor as two "logical" processors. Each logical processor is allocated a
thread on which to work, as well as a share of execution resources such as cache memories,
execution units, and buses.

Information could potentially be deduced by local users using programs capable of shared
memory cache eviction analysis. Proof of concept code using timing and cache eviction
analysis techniques have demonstrated that cryptographic keys can be deduced on Intel
processors with Hyper-Threading technology (HTT) . It is likely that similar techniques could
be employed on other processor architectures that support simultaneous multithreading.

This vulnerability is applicable to many operating system platforms running on a hardware
platform that supports simultaneous multithreading (Intel HTT in particular).

www.fi.muni.cz/crocs

CR& CS

Human Acceptability

Security mechanisms complicate accessing
resources and performing duties

— Hide complexity introduced by security mechanisms to
users

Chernobyl nuclear power plant
— Some safety mechanisms disabled/bypassed

Unpopularity of User Account Control (UAC) in
Microsoft Vista

— Number of alerts reduced in subsequent Windows
versions

Certificate validation errors in Web browsers

www.fi.muni.cz/crocs

CR& CS

Don't reinvent the wheel

« Use standard, tested components

« Use SW, libraries, designs, protocols that other are
successfully using

* In particular use standard crypto and crypto libraries
— Use standard good random number generators
— Use standards parsers etc.
— Don’t implement your own cryptography

 Bad examples
— Bad use of crypto: 802.11b
— Protocols without expert review: early 802.11i
— Ad-hoc changes to OpenSSL key generation: Debian (2008)

www.fi.muni.cz/crocs

CR& CS

Avoid High-Risk Technologies

« Some technologies are considered more insecure than
others.

* This includes programming languages, services and
protocols.

 Statistics of published vulnerabilities.
— E.g. comparison of web browsers

 |f the technology must be used, integrate security wrappers,
application firewalls etc.

« JVM is a hot target these days

— Java as a language has always been considered a bit more
secure language than C/C++

- Early versions of PHP, Flash, Silverlight,

www.fi.muni.cz/crocs

CR& CS

Learn from Mistakes

« Learn from your mistakes and mistakes of others
— How did the security error occur?
— Is the same bug repeated in the code?
— How could it have been prevented?

« Change your education/practices to avoid repeating
the same errors.

— Examine mistakes/bugs of your “competitors” (!)

www.fi.muni.cz/crocs

CR& CS

Secure the weakest link

* Think about possible attacks
— What want attackers achieve?
— How can they attack your system?
— What do they need to succeed?

* Find weakest link

— Analyze the ways to attack the system
* The security analysis

— Improve the security of the weakest link

www.fi.muni.cz/crocs

CR& CS

The weakest link

* Encryption example
— The system encrypts data
— Encryption is done in a standard crypto library
« The library will typically not be the weakest link
— Data is stored in encrypted form

— The weakest link will typically be centered around the
cryptographic key / password

 How and where is the passport stored?

 How is it processed during the data
encryption/decryption?

www.fi.muni.cz/crocs

CR& CS

Software design pattern

« SW design pattern
— General solution to a standard problem
— The problem is common and being solved frequently
— The solution is general and can be reused

 The aim is to speed up the development process
and to avoid issues that can be recognized later (or
too late).

* Design pattern is not code
— Design pattern # code reuse

www.fi.muni.cz/crocs

CR& CS

Software design pattern

« Examples
— Computational design patterns
* |dentify key computations
— Execution patterns
» Execution of stream of tasks & synchronization
— Implementation strategy patterns
* Program organization and data structures

www.fi.muni.cz/crocs

CR& CS

Security patterns

* Applying the idea of Software design pattern to the
area of computer security

« Aim is to achieve some IT security goals
— Like confidentiality, integrity, ... or some specific goal

« Comprehensive catalogs of security patterns exist

— E.g. Munawar Hafiz. Security Pattern Catalog
— http://www.munawarhafiz.com/securitypatterncatalog/index.php

www.fi.muni.cz/crocs

CR& CS

Examples of security patterns

« Security patterns for highly available systems
— Check pointed system
* Replication and recovery from component failure
— Standby pattern
* Resuming the service of a failing component
— Comparator-checked fault tolerant system
* monitoring the failure free behavior of a component
— Replicated system
« The use of redundant components, load balancing, ...

www.fi.muni.cz/crocs

CR®CS

Security Pattern Catalog

Core
Security
Patterns

— Spoofing

—Tampering

——Repudiation

—Information

disclosure
— Do5S

—E|evation of
privilege

Security
Pattern
Space

Perimeter
Security
Patterns

— Spoofing
—Tampering
——Repudiation
—Information

disclosure

—DoS

——Elevation of
privilege

Exterior
Security
Patterns

L Spoofing

L Tampering
—— Repudiation
L Information

disclosure

L DosS

L__Elevation of
privilege

Source: http://www.munawarhafiz.com/securitypatterncatalog/index.php

www.fi.muni.cz/crocs

CR®CS

Security Pattern Catalog

Needs Ident for prise Assets
Walue of nssl:'r-—" “"-,___Ammts
Asset Evaluation Vulnerability Assessment

Rank aay_-g‘:‘“-—-‘ x'-.ﬁ:rn threats
Risk Determination
Strang peatection

Mitigate vuinerability
o

Select and
integrate Defense In Depth

CountarmEasU
t‘cnwse defense mechanism
Enterprise Security Approaches

Tolerate failure, no sutage Selution Where to start .

touse | Low Hanging Frult coinon w, white Hats Hack Thyselves
[Sclurio'\ 10 use

Enterprise Security Services

Replicated
A System
I A

H v
| standby €——
L]

ate partial outage

A
k '
5 v
A4 Tandem
System Detect failure
nE AR Container for Protected System Security by

ety

ToE=CEicn

Frevent Pr
privilege escalation privilege escalation

¢'Hult‘s
Policy

Ae-partition

Pratect ser
infarmatian

Extermal polic

Enforce Bemilitarized Zone « o _ _ _
olicy

Dexisian Hidden Compartmentalization

) Lnn nt = A
Single Access Paint Variatian in Mmu—me access Effic enkl a-partition
Small Process

=
Zero knowledgs External
P ._&.urnnnfar.-n

cammunicatian Information Obscurity Front Door ¥——_"_
Urabservable Setum st a thied garty _y Brokered 3"
Aszurme channel frewal Trusted o 5 _Authentication simple st partiticn
ali ==
Oblivious i Secoas Communextion - Eratsction Reverss Proxy ag.em.,,k Seay gl ¢\‘$p=mnm. communcate Distributed Responsibility Corcuent
Transfer Pasudonymous ldentit Store facade | for Proxy Filter all Kreawn Check Single Minefield < u write race Unigue Location
V! Y 1 - nput Packet .. Address Policy Enforcement Between partitians Restrict tor Each
Mix with A ey memang services Facade for - Filt e e Blackiist | Paint Threaded usources Consua e
. afe ar Facade wsources COnstrain Write Request
Delay prabatile susne:t/ S \oeep Hide Secure Service Internal Piriwan s Trust Partitioning PR -
taleran Anonymity Set efense identifiable Proxy !-l‘n-'lrr" . Feplay eck Contred Chet Execution Demain Censtrain
e ymity data Security F o ‘ - palicy acces: inputs Gracaful Frevent Frotect gridranment
Association palicy Integration Reverse I"mm‘, il i X nt . restart Frivilege i“mp'—r
Container Extemal 5"““‘"""’ * Replay brite-farg Enforcer Enfore “v:';:::v':ﬂ inhesitance rights erver
Batched for security Authenticatar expase “"“'“ ; policy attack P i I"olicrrl'or rm and data Checkpointed Controlled & - ~A Controlled Sandbox
Imu.t’lng chaining attributes Messagin P —P'ro:y Based Account s:r\:',:r ACEEE separation (lr'fgn:y System _mpm:g,, Creation bject Factery \ o Sandbax
. i data control - Firewall Message Replay Lockout w5 cantral check) X Frogect ety F——
. ‘“"‘““ Security Context .= Seatetul Detection Role Based Content Efror exception Limit process ‘ aety L
P 4 Trafhc Exit Morphed L Message Chack l Security Session Access Control Dependent Detection and Qetedats lifatimme ~ > Controlled Virtual chroot Jail
Random che
i Wait R n v I epend Stateful Firow: Constrai Security | Processing Curﬂctlun Secure Resource Address Space
Create Create pting Web Agent Gateway Guide user ters kY “-ﬂt‘*nnr Pooling Safe Data
™ \ ;
prodabie prabiable Frotact Reisse validation navigation 5 Multiievel®\ e —e eiitmipioy
suspecks suspects configentiality uthentication companant Directed Limited Security g ——— Exception Shielding
Cover Traffic Layered Encryption wwsparty | Message commuricat= S€8slon ccess Targets "
Constant Make Reusable Single 5ign ON messaging | Inspector between 4y Full Access specify and Check
P ndistingulshabl cradentials S2E5i0N5 Compenent with Errors Subject Descriptor nforce Contalner righk
Separake Secure Message Router Secure Session Interaction?
Link Padding Constant Length Padding S50 processing Object Secure Service Facade [mant ;hnat_ll:d
camponent Hide - S
Single Sign On Delegator H :Ie gommumication data, :_:n‘r“;‘_':':‘:::"“ Reference Monitor
A s
r“_’_"a‘ial/ Manage b " Dynamic Check reseurce
RISAEE anse passwonds Obfuscated Transfer ,;m.c, Service Management liemit
Credential Tokenizer Protect Pollcy Del DoS Safety
Assertion Password serverside o OO egate Log
Bullder Synchronizer data _ audit
client-side data infa Log
events

Encrypted Storage £ = Client Data Storage

Audit ¢ _ f:;; :

Loy dit inf
g eudit infa » i

Lag auents

Source: http://www.munawarhafiz.com/securitypatterncatalog/index.php

www.fi.muni.cz/crocs

CR& CS

Security Pattern Catalog - Example

 Problem

— A security failure in a compartment can cause the whole system to crash. How can
we make the system robust against security failures?

e Solution

— Employ security measures at multiple layers of an application and throughout its
operating environment. Defense In Depth is more a security principle. In fact this is
considered to be the core security principles for system architecture.

« Known Uses

— qgmail does not employ only one security mechanism, rather it has security solutions
built in different levels of architecture.

e« Source
— Hafiz et. al.
 Tags

— Deep Defense

www.fi.muni.cz/crocs

CR®CS

OWASP Top 10 of WEB application vulnerabilities

1. Unvalidated Input

2. Broken Access Control

3. Broken Authentication and Session Management
4. Cross Site Scripting (XSS) Flaws

5. Buffer Overflows

6. Injection Flaws

/. Improper Error Handling

8. Insecure Storage

9. Denial of Service

10.Insecure Configuration Management

www.fi.muni.cz/crocs

CR& CS

The SD3 Securlty Framework (Microsoft)

SD?
- | & Secure architecture and code
g PR Threat analysis
by Design | " :
¢ Vulnerability reduction
: ¢ Attack surface area reduced
> g‘;‘;;lt 4=« Unused features turned off by default
= | & Minimum privileges used

= | & Protection: Detection, defense, recovery,
Securein |- management

Deployment |= | & Process: How to guides, architecture guides
'% | © People: Training

www.fi.muni.cz/crocs

CR®CS

Security in Software Development Life
Cycle

Security External Static Penetration
recuirements review analysis testing
(tools)
Abuse Risk Risk-based Risk _
cases analysis security tests analysis Security
\ / \ l \ breaks
Requirements Design Test Code Test Field
and use cases plans results feedback

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
TEEE, Vol 2, No. 2, pp. 80-83, 2004.]

www.fi.muni.cz/crocs

	Secure programming techniques and approaches I��Defence in depth
	Defence in depth
	Defence in depth: Definition (Wikipedia)
	Defence in depth
	Basic concepts
	Basic concepts in more details
	Compartmentalization
	suEXEC - example
	Least Privilege
	Least Privilege - example
	Minimize needed trust
	Example: Web security
	Example: Web security (2)
	Example: Web security (3)
	Fail-Safe Defaults
	Example - Blacklisting of HTML
	Fail-safe vs. Fail-secure
	Failing securely (1)
	Failing securely (2)
	FreeBSD-SA-01:56
	FreeBSD-SA-01:56
	FreeBSD-SA-11:09.pam_ssh
	Failing securely
	Do not expose system internals in case of errors
	Failing securely
	KISS principle
	Keep It Simple
	FreeBSD-SA-11:08.telnetd
	KISS principle – Best practices
	Mediation is difficult
	FreeBSD-SA-08:03.sendfile
	“Security by Obscurity” is NOT secure
	Security by Obscurity vs. Open Design
	Security by obscurity
	Separation of Privilege
	Do not share
	Vulnerability Note VU#911878 (CVE-2005-0109)
	Human Acceptability
	Don’t reinvent the wheel
	Avoid High-Risk Technologies
	Learn from Mistakes
	Secure the weakest link
	The weakest link
	Software design pattern
	Software design pattern
	Security patterns
	Examples of security patterns
	Security Pattern Catalog
	Security Pattern Catalog
	Security Pattern Catalog - Example
	OWASP Top 10 of WEB application vulnerabilities
	The SD3 Security Framework (Microsoft)
	Security in Software Development Life Cycle

