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Need for “random” data

•
 

Games 
•

 
Simulations, …

•
 

Crypto
–

 
Symmetric keys

–
 

Asymmetric keys
–

 
Padding/salt

–
 

Initialization vectors
–

 
Challenges (for challenge –

 
response protocols)

–
 

…



“Random” data

•
 

Sometimes (games, simulations) we only need data 
with some statistical properties
–

 
Evenly distributed numbers (from an interval)

–
 

Long and complete cycle
•

 
Large number of different values

•
 

All values can be generated
•

 
In crypto we also need unpredictability
–

 
Even if you have seen all the “random”

 
data generated 

until now you have no idea what will be the random data 
generated next



“Random” data generators
•

 
Insecure

 
random

 
number

 
generators

–
 

noncryptographic
 

pseudo-random
 

number
 

generators
–

 
Often leak information about their internal state with each output

•
 

Cryptographic
 

pseudo-random
 

number
 

generators
 

(PRNGs)
–

 
Based on seed deterministically generate pseudorandom data

•
 

“True”
 

random data generators
–

 
Entropy harvesters

–
 

gather
 

entropy
 

from
 

other
 

sources
 

and
 

present
 

it
 

directly



What (pseudo)random data to use?

•
 

Avoid using noncryptographic
 

random number 
generators

•
 

For many purposes the right way is to get the seed 
from the true random number generator and then 
use it in the pseudorandom number generator 
(PRNG)
–

 
PRNG are deterministic, with the same seed they produce 
the same pseudorandom sequence

•
 

There are situations, where PRNG are not enough
–

 
E.g. one time pad



Noncryptographic generators

•
 

Standard rand()/srand(), random ()/srandom() 
functions
–

 
libc

•
 

“Mersenne
 

Twister”
•

 
linear feedback shift registers

•
 

Anything else not labeled as cryptographic PRNG…

•
 

Not to be used for most purposes….



Noncryptographic generators

Source: http://xkcd.com/

Source: Writing secure code, 2nd

 

edition



PRNG

•
 

Cryptographic
 

pseudo-random
 

number
 

generators
 are still

 
predictable

 
if

 
you

 
somehow

 
know

 
their

 internal
 

state.
•

 
Assuming

 
the

 
generator

 
was

 
seeded

 
with

 
sufficient

 entropy
 

and
 

assuming
 

the
 

cryptographic
 

algorithms
 have

 
the

 
security

 
properties

 
they

 
are expected

 
to 

have, cryptographic
 

generators
 

do not
 

quickly
 reveal

 
significant

 
amounts

 
of

 
their

 
internal

 
state.

•
 

Protect the seed of the PRNG!
•

 
Entropy of the seed matters!



Entropy of the seed

How much entropy do we need to seed a cryptographic generator securely?

Give as much entropy as the random number generator can accept. The entropy you get 
sets the maximum security level of your data protected with that entropy, directly or 
indirectly. 

E.g.  If a 256-bit AES key is obtained with a PRNG seeded with 56 bits of entropy, then any 
data encrypted with the 256-bit AES key will be no more secure than encrypted with a 56-bit 
DES key.

Source: Secure programming Cookbook



Entropy estimates

•
 

Entropy
–

 
Definition Shannon

–
 

Definition Min-entropy
•

 
Difficulty of measurement/estimates
–

 
For example, the digits of π

 
appear to be a completely 

random sequence that should pass any statistical test for 
randomness. Yet they are also completely predictable.



Entropy estimates
•

 
After

 
figuring

 
out

 
how

 
much entropy

 
is

 
in a piece

 
of

 
data

 
(e.g. 

expected entropy is 160 bits),
 

it is wise to divide
 

the
 

estimate
 by a factor

 
of

 
4 to 8 to be

 
conservative.

•
 

Because
 

entropy
 

is
 

easy
 

to overestimate, you
 

should
 generally

 
cryptographically

 
postprocess

 
any

 
entropy

 collected
 

(a process
 

known
 

as whitening) before
 

using
 

it.
–

 
E.g. use hash functions (SHA2)

•
 

As most
 

PRNG
 

take
 

a fixed-size
 

seed, and
 

you
 

want
 

to 
maximize

 
the

 
entropy

 
in that

 
seed. However, when

 
collecting

 entropy, it
 

is
 

usually
 

distributed
 

sparsely
 

through
 

a large
 amount

 
of

 
data.

–
 

E.g. use hash functions (SHA2)



Tips on collecting entropy
•

 

Make sure that any data coming from an entropy-producing source is postprocessed 
with cryptography to remove any lingering statistical bias and to help ensure that your 
data has at least as many bits of entropy input as bits you want

 

to output. 

•

 

Make sure you use enough entropy to seed any pseudo-random number generator 
securely. Try not to use less than 128 bits.

•

 

When choosing a pseudo-random number generator, make sure to pick one that 
explicitly advertises that it is cryptographically strong. If you do not see the word 
“cryptographic”

 

anywhere in association with the algorithm, it is probably not good for 
security purposes, only for statistical purposes.

•

 

When selecting a PRNG, prefer solutions with a refereed proof of security bounds. 
Counter mode, in particular, comes with such a proof, saying that if you use a block 
cipher bit with 128-bit keys and 128-bit blocks seeded with 128 bits of pure entropy, and 
if the cipher is a pseudo-random permutation, the generator should lose a bit of entropy 
after 264 blocks of output.

•

 

Use postprocessed entropy for seeding pseudo-random number generators or, if 
available, for picking highly important cryptographic keys. For everything else, use 
pseudo-randomness, as it is much, much faster.

Source: Secure programming Cookbook



Unix Infrastructure

•
 

Special files –
 

reading files provides 
(pseudo)random

 
data

–
 

/dev/random
•

 
Always produces entropy

•
 

Provides random data
•

 
Can block the caller until entropy available (blocking)

–
 

/dev/urandom
•

 
Based on cryptographic pseudorandom generator

•
 

Amount of entropy not quaranteed
•

 
Always returns quickly (non-blocking)



Unix Infrastructure

•
 

Available on most modern Unix-like OS
–

 
Including Linux, *BSD, etc.

•
 

Each OS implements the functionality 
independently
–

 
Quality of the implementation can vary from OS to OS

•
 

Usually no need to worry
•

 
The core of the system is the seed of PRNG
–

 
The entropy of the seed may be low during/just after 
booting (in particular at diskless stations, virtual HW etc.)

–
 

The seed is often saved at shutdown



Unix infrastructure
•

 
Operation on files
–

 
To get entropy use open the file and read it
•

 
use read(2) 

•
 

it returns number of bytes read
•

 
short read (even 0 if interrupted by a signal)

•
 

It
 

is
 

also
 

possible
 

to write
 

to /dev/random. 
–

 
This

 
allows

 
any

 
user

 
to mix random

 
data into

 
the

 
pool. 

–
 

Non-random
 

data is
 

harmless, because
 

only
 

a privileged
 

user
 can

 
issue

 
the

 
ioctl

 
needed

 
to increase

 
the

 
entropy

 
estimate. 

•
 

Linux
–

 
The

 
current

 
amount

 
of

 
entropy

 
and

 
the

 
size

 
of

 
the

 
Linux kernel

 entropy
 

pool
 

are available
 

in /proc/sys/kernel/random/.



Example: Linux



Example: Linux



Example: FreeBSD
•

 

FreeBSD implements a 256-bit variant of the Yarrow algorithm, intended to provide a 
cryptographically secure pseudorandom stream—this replaced a previous Linux style 
random device. Unlike the Linux /dev/random, the FreeBSD /dev/random device never 
blocks. Its behavior is similar to the Linux /dev/urandom, and /dev/urandom

 

on 
FreeBSD is linked to /dev/random.

•

 

Yarrow is based on the assumptions that modern PRNGs

 

are very secure if their 
internal state is unknown to an attacker, and that they are better understood than the 
estimation of entropy. Whilst entropy pool based methods are completely secure if 
implemented correctly, if they overestimate their entropy they may become less secure 
than well-seeded PRNGs. In some cases an attacker may have a considerable amount 
of control over the entropy, for example a diskless server may get almost all of it from 
the network—rendering it potentially vulnerable to man-in-the-middle attacks. Yarrow 
places a lot of emphasis on avoiding any pool compromise and on recovering from it as 
quickly as possible. It is regularly reseeded; on a system with small amount of network 
and disk activity, this is done after a fraction of a second.

Source: Wikipedia



MS Windows – (pseudo)random data

•
 

Function CryptGenRandom()
–

 
Part of MS CryptoAPI
•

 
First use CryptAcquireContext( )

•
 

and then CryptGenRandom()
–

 
Based on PRNG

•
 

Internally CryptGenRandom() is using 
RtlGenRandom()
–

 
Direct call of RtlGenRandom() possible

–
 

Does not require loading Crypto API



MSDN: CryptGenRandom()

Source: MSDN



MSDN: RtlGenRandom()

Source: MSDN



CryptGenRandom() vs. RtlGenRandom()

"Historically, we always told developers not to use functions such as rand to 
generate keys, nonces and passwords, rather they should use functions like 
CryptGenRandom, which creates cryptographically secure random numbers. The 
problem with CryptGenRandom is you need to pull in CryptoAPI 
(CryptAcquireContext and such) which is fine if you're using other crypto functions.

On a default Windows XP and later install, CryptGenRandom calls into a function 
named ADVAPI32!RtlGenRandom, which does not require you load all the CryptAPI 
stuff. In fact, the new Whidbey CRT function, rand_s calls RtlGenRandom".

Source:http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx



CryptGenRandom() documentation

With Microsoft CSPs, CryptGenRandom() uses the same random number generator used by other 
security components. This allows numerous processes to contribute to a system-wide seed. CryptoAPI 
stores an intermediate random seed with every user. To form the seed for the random number 
generator, a calling application supplies bits it might have—for instance, mouse or keyboard timing 
input—that are then combined with both the stored seed and various system data and user data such as 
the process ID and thread ID, the system clock, the system time, the system counter, memory status, 
free disk clusters, the hashed user environment block. This result is used to seed the pseudorandom 
number generator (PRNG). In Windows Vista with Service Pack 1 (SP1) and later, an implementation of 
the AES counter-mode based PRNG specified in NIST Special Publication 800-90 is used. In 
Windows Vista, Windows Storage Server 2003, and Windows XP, the PRNG specified in Federal 
Information Processing Standard (FIPS) 186-2 is used. If an application has access to a good random 
source, it can fill the pbBuffer buffer with some random data before calling CryptGenRandom(). The 
CSP then uses this data to further randomize its internal seed. It is acceptable to omit the step of 
initializing the pbBuffer buffer before calling CryptGenRandom().

Source: MSDN



Design of the old Windows PRNG (up to Vista)

Source: Writing secure code, 2nd

 

edition



The entropy in Windows comes from …

Source: Writing secure code, 2nd edition



Random data in openSSL
•

 
OpenSSL

 
exports

 
its

 
own

 
API for

 
manipulating

 
random

 
numbers. It

 has its
 

own
 

cryptographic
 

PRNG, which
 

must
 

be
 

securely
 

seeded.
•

 
To use the

 
OpenSSL

 
randomness

 
API, you

 
must

 
include

 openssl/rand.h in your
 

code
 

and
 

link
 

against
 

the
 

OpenSSL
 

crypto
 library.

•
 

void
 

RAND_seed(const
 

void
 

*buf, int
 

num);
•

 
void

 
RAND_add(const

 
void

 
*buf, int

 
num, double entropy);

•
 

int
 

RAND_load_file(const
 

char
 

*filename, long
 

max_bytes);
–

 
Pure entropy expected

•
 

int
 

RAND_write_file(const
 

char
 

*filename);
–

 
To save the state of PRNG

•
 

int
 

RAND_bytes(unsigned
 

char
 

*buf, int
 

num);



HW random number generators

•
 

Require specific devices
–

 
More or less common

–
 

Price
•

 
LavaRnd

 
(Lava Lamp)

•
 

Random.org
•

 
Special devices

•
 

Crypto devices
–

 
Smartcard

–
 

HSM
–

 
SSL cards 



PRNG Standards
•

 
FIPS 186-2

 
(replaced later by -3 and -4)

•
 

NIST SP 800-90A
–

 
Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators

–
 

Hash_DRBG
–

 
HMAC_DRBG

–
 

CTR_DRBG
–

 
Dual

 
EC DRBG

 
(problematic)

•
 

Fortuna
•

 
ANSI X9.17-1985, Appendix C

•
 

ANSI X9.31-1998, Appendix A.2.4
•

 
ANSI X9.62-2005, Annex D



(P)RNG Standards

•
 

NIST SP 800-90B
–

 
Recommendation for the Entropy Sources Used for 
Random Bit Generation

•
 

NIST SP 800-90C
–

 
Recommendation for Random Bit Generator (RBG) 
Constructions



ANSI X9.17
•

 
ANSI X9.17 standard 
–

 
It takes as input a TDEA (with 2 DES keys) key bundle k and 
(the initial value of) a 64 bit random seed s. Each time a random 
number is required it: 
•

 
Obtains the current date/time D to the maximum resolution 
possible.

•
 

Computes a temporary value t = TDEAk

 

(D)
•

 
Computes the random value x = TDEAk

 

(s
 


 

t) 
•

 
Updates the seed s = TDEAk

 

(x
 


 

t)
–

 
Obviously, the technique is easily generalized to any block 
cipher 
•

 
AES has been suggested…



ANSI X9.17



ANSI X9.31 

Pseudorandom data

Internal state Timestamp



ANSI X9.31

•
 

Security of X9.31 is not considered sufficient
•

 
Bad recovery after internal state compromise

•
 

The only entropy added later are the timestamps
•

 
The entropy of timestamps is problematic

•
 

Too much dependent on the entropy of initial values 
of
–

 
The seed

–
 

The symmetric encryption keys (3DES or AES)



Fortuna

•
 

Designed by Bruce Schneier
 

and Niels Ferguson
•

 
Follower of the Yarrow algorithm

•
 

Efforts to recover quickly from the internal state 
compromise

•
 

Adding entropy frequently
•

 
Fortuna is state of the art



Fortuna
•

 
It

 
is

 
composed

 
of

 
:

–
 

Generator: produces pseudo-random
 

data.
•

 
Based on any good block cipher (e.g. AES, Serpent,Twofish). Cipher is 
running in counter mode, encrypting successive values of an 
incrementing counter. Key is changed periodically (no more than 1 MB 
of data + key changed after every data request).

–
 

Entropy
 

accumulator:
 

collects
 

genuinely
 

random
 

data
 

and reseeds
 

the
 generator.

•
 

The entropy accumulator is designed to be resistant against injection 
attacks thanks to the use of 32 pools of entropy (at the nth

 

reseeding of 
the generator, pool k is used only if 2k

 

divides n).
–

 
Seed

 
file:

 
stores

 
state



NIST SP 800-90A

•
 

NIST Special
 

Publication
 

800-90A
–

 
Recommendation for Random Number Generation Using 
Deterministic Random Bit Generators

•
 

Mechanisms based on hash functions
–

 
Hash_DRBG

–
 

HMAC_DRBG
•

 
Mechanisms based on block ciphers
–

 
CTR_DRBG

•
 

Mechanisms Based on Number Theoretic Problems
–

 
Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)



ECC NIST random number generator 
(Dual_EC_DRBG)
•

 
Problematic

•
 

Even more problematic after Snowden

The Guardian and The New York Times have reported that the National Security Agency (NSA) 
inserted a CSPRNG into NIST SP 800-90 that had a backdoor which allows the NSA to readily decrypt 
material that was encrypted with the aid of Dual_EC_DRBG. Both papers report that, as independent 
security experts long suspected, the NSA has been introducing weaknesses into CSPRNG standard 
800-90; this being confirmed for the first time by one of the top secret documents leaked to the 
Guardian by Edward Snowden. The NSA worked covertly to get its own version of the NIST draft 
security standard approved for worldwide use in 2006. The leaked document states that "eventually, 
NSA became the sole editor.“In spite of the known potential for a backdoor and other known significant 
deficiencies with Dual_EC_DRBG, several companies such as RSA Security continued using 
Dual_EC_DRBG until the backdoor was confirmed in 2013.

Source:http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator#NSA_backdoor_in_the_Dual_EC_DRBG_PRNG



Testing randomness

•
 

Testing whether the generated sequence of bits 
“looks random”, i.e. has got some statistical 
properties
–

 
E.g. the number of 0s versus the number of 1s in the 
sequence of bits.

•
 

2 important test suits
–

 
NIST

–
 

Diehard



NIST tests

•
 

NIST Special
 

Publication
 

800-22rev1a 
–

 
“A Statistical

 
Test Suite

 
for

 
the

 
Validation

 
of

 
Random

 Number
 

Generators
 

and
 

Pseudo
 

Random
 

Number
 Generators

 
for

 
Cryptographic

 
Applications”

–
 

Revised in
 

April
 

2010
–

 
Textual description of the tests (+ mathematics/statistics 
behind)

–
 

Software implementation
•

 
STS-2.1.2

Source: NIST Special

 

Publication

 

800-22rev1a



NIST tests
•

 

The 15 tests are:
–

 

The Frequency (Monobit) Test,
–

 

Frequency Test within a Block,
–

 

The Runs Test,
–

 

Tests for the Longest-Run-of-Ones in a Block,
–

 

The Binary Matrix Rank Test,
–

 

The Discrete Fourier Transform (Spectral) Test,
–

 

The Non-overlapping Template Matching Test,
–

 

The Overlapping Template Matching Test,
–

 

Maurer's "Universal Statistical" Test,
–

 

The Linear Complexity Test,
–

 

The Serial Test,
–

 

The Approximate Entropy Test,
–

 

The Cumulative Sums (Cusums) Test,
–

 

The Random Excursions Test, and
–

 

The Random Excursions Variant Test.

Source: NIST Special

 

Publication

 

800-22rev1a



NIST test – examples of tests

Source: NIST Special

 

Publication

 

800-22rev1a



Diehard tests

•
 

Set of statistical tests to verify the quality of random 
number generators.

•
 

Developed
 

by George
 

Marsaglia.
•

 
Description of the test and implemetation

•
 

Alternative GPL implemetation
 

“Dieharder”
–

 
Contains also implementation of NIST STS tests



Diehard tests
•

 

Birthday spacings: Choose random points on a large interval. The spacings

 

between the points should be asymptotically 
exponentially distributed. The name is based on the birthday paradox.

•

 

Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur 
with statistically equal probability.

•

 

Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then 
determine the rank of the matrix. Count the ranks.

•

 

Monkey tests: Treat sequences of some number of bits as "words".

 

Count the overlapping words in a stream. The number of 
"words" that don't appear should follow a known distribution. The name is based on the infinite monkey theorem.

•

 

Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and count the 
occurrences of five-letter "words".

•

 

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 
tries, the number of successfully "parked" circles should follow

 

a certain normal distribution.
•

 

Minimum distance test: Randomly place 8,000 points in a 10,000 x

 

10,000 square, then find the minimum distance between the 
pairs. The square of this distance should be exponentially distributed with a certain mean.

•

 

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is 
the minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.

•

 

The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats 
needed to reach 1 should follow a certain distribution.

•

 

Overlapping sums test: Generate a long sequence of random floats

 

on [0,1). Add sequences of 100 consecutive floats. The 
sums should be normally distributed with characteristic mean and

 

sigma.
•

 

Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should 
follow a certain distribution.

•

 

The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow 
a certain distribution.



Using Password to derive cryptokeys

•
 

Entropy of the password
–

 
Length

–
 

Character set
•

 
Do not use the password directly as key

•
 

Cryptographically process the password
–

 
E.g. hash it

•
 

Derivation should slow (e.g. 1 second)
–

 
To slow down brute force attacks



PKCS#5

•
 

PBKDF1 (Password-Based Key Derivation 
Function 1)
–

 
Up to 160 bits

–
 

Old, replaced by newer function
•

 
PBKDF2 (Password-Based Key Derivation 
Function 2)



PBKDF2

•
 

DK = PBKDF2(PRF, Password, Salt, c, dkLen)
–

 
PRF is a pseudorandom function (output of hlen)

–
 

c is the number of iterations
–

 
dkLen

 
is the length of the derived key

•
 

DK = T1
 

|| T2
 

|| ... || Tdklen/hlen
–

 
Ti

 

= F(Password, Salt, Iterations, i)
•

 
F(Password, Salt, Iterations, i) = U1

 

^ U2

 

^ ... ^ Uc

–
 

U1 = PRF(Password, Salt || INT_32_BE(i))
–

 
U2 = PRF(Password, U1)

–
 

…



Debian random number generator flaw

On May 13th, 2008 the Debian project announced that Luciano Bello found an interesting vulnerability in the 
OpenSSL package they were distributing.  The bug in question was caused by the removal of the following line of 
code from md_rand.c

MD_Update(&m,buf,j);
[ .. ]
MD_Update(&m,buf,j); /* purify complains */

These lines were removed because they caused the Valgrind and Purify tools to produce warnings about the use of 
uninitialized data in any code that  was linked to OpenSSL. You can see one such report to the OpenSSL team here. 
Removing this code has the side effect of crippling the seeding process for the OpenSSL PRNG. Instead of mixing in 
random data for the initial seed, the only "random" value that was used was the current process ID. On the Linux
platform, the default maximum process ID is 32,768, resulting in a very small number of seed values being used for 
all PRNG operations.

Source: https://www.schneier.com/blog/archives/2008/05/random_number_b.html



Debian flaw- impact
This is a Debian-specific vulnerability which does not affect other operating systems which are not 
based on Debian. However, other systems can be indirectly affected if weak keys are imported into 
them.

It is strongly recommended that all cryptographic key material which has been generated by 
OpenSSL versions starting with 0.9.8c-1 on Debian systems is recreated from scratch. Furthermore, 
all DSA keys ever used on affected Debian systems for signing or authentication purposes should 
be considered compromised; the Digital Signature Algorithm relies on a secret random value used 
during signature generation.

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable distribution on 2006-09-17, and 
has since that date propagated to the testing and current stable (etch) distributions. The old stable 
distribution (sarge) is not affected.

Affected keys include SSH keys, OpenVPN keys, DNSSEC keys, and key material for use in X.509 
certificates and session keys used in SSL/TLS connections. Keys generated with GnuPG or 
GNUTLS are not affected, though.

Source: http://www.debian.org/security/2008/dsa-1571



Paper: Lousy Random Numbers Cause Insecure 
Public Keys

In this paper we complement previous studies by concentrating on computational and randomness properties of 
actual public keys, issues that are usually taken for granted. Compared to the collection of certificates considered in 
[12], where shared RSA moduli are "not very frequent", we found a much higher fraction of duplicates. More 
worrisome is that among the 4.7 million distinct 1024-bit RSA moduli that we had originally collected, more than 
12500 have a single prime factor in common. That this happens may be crypto-folklore, but it was new to us, and it 
does not seem to be a disappearing trend: in our current collection of 7.1 million 1024-bit RSA moduli, almost 27000 
are vulnerable and 2048-bit RSA moduli are affected as well. When exploited, it could act the expectation of security 
that the public key infrastructure is intended to achieve.
We checked the computational properties of millions of public keys that we collected on the web. The majority does 
not seem to suffer from obvious weaknesses and can be expected to provide the expected level of security. We 
found that on the order of 0.003% of public keys is incorrect, which does not seem to be unacceptable. We were 
surprised, however, by the extent to which public keys are shared among unrelated parties. For ElGamal and DSA 
sharing is rare, but for RSA the frequency of sharing may be a cause for concern. What surprised us most is that 
many thousands of 1024-bit RSA moduli, including thousands that are contained in still valid X.509 certificates, 
offer no security at all. This may indicate that proper seeding of random number generators is still a problematic 
issue.... 

Source: https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html



Netscape <2: SSL random number weakness

Source: http://www.hit.bme.hu/~buttyan/courses/Revkomarom/prng.pdf



Netscape <2: SSL random number weakness

•
 

Access to the machine with browser
–

 
pid, ppid

 
is known

–
 

time can guessed +-
 

1 second
–

 
microsecond unknown: 20 bits

•
 

No access to machine with browser
–

 
Entropy of the seed increases to max. 47 bits

•
 

Contrast with 128 bit session key

Source: http://www.hit.bme.hu/~buttyan/courses/Revkomarom/prng.pdf



Code red worm: IP list generator
On July 12, 2001, a worm began to exploit the aforementioned buffer-overflow vulnerability in Microsoft's IIS 
webservers. Upon infecting a machine, the worm checks to see if the date (as kept by the system clock) is 
between the first and the nineteenth of the month. If so, the worm generates a random list of IP addresses and 
probes each machine on the list in an attempt to infect as many computers as possible. However, this first 
version of the worm uses a static seed in its random number generator and thus generates identical lists of IP 
addresses on each infected machine. The first version of the worm spread slowly, because each infected 
machine began to spread the worm by probing machines that were either infected or impregnable. The worm is 
programmed to stop infecting other machines on the 20th of every month. In its next attack phase, the worm 
launches a Denial-of-Service attack against www1.whitehouse.gov from the 20th-28th of each month. 

Code-Red version 2 uses a random seed, so each infected computer tries to infect a different list of randomly 
generated IP addresses. This seemingly minor change had a major impact: more than 359,000 machines 
were infected with Code-Red version 2 in just fourteen hours. 

Source: http://www.caida.org/research/security/code-red/



CVE-2014-9293

•
 

When no authentication key is set in the 
configuration file, ntpd(8) would generate a random 
key that uses a non-linear additive feedback 
random number generator seeded with very few 
bits of entropy.  [CVE-2014-9293]

•
 

The ntp-keygen(8) utility is also affected by a similar 
issue. [CVE-2014-9294]



Texas hold’em Poker application

•
 

Based random number generation on standard 
borland

 
random number generator

•
 

“Reliable
 

Software Technologies”
 

developed a tool 
that required five cards from the deck to be known.

Source: http://www.ibm.com/developerworks/library/s-playing/



Dice-o-matic 
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