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Abstract 

The most common metric to assess a classifier’s 

performance is the classification error rate, or the 

probability of misclassification (PMC). Receiver 

Operating Characteristic (ROC) analysis is a more 

general way to measure the performance. Some metrics 

that summarize the ROC curve are the two normal-

deviate-axes parameters, i.e., a and b, and the Area 

Under the Curve (AUC). The parameters "a" and "b" 
represent the intercept and slope, respectively, for the 

ROC curve if plotted on normal-deviate-axes scale. AUC 

represents the average of the classifier TPF over FPF 

resulting from considering different threshold values. In 

the present work, we used Monte-Carlo simulations to 

compare different bootstrap-based estimators, e.g., 

leave-one-out, .632, and .632+ bootstraps, to estimate 

the AUC. The results show the comparable performance 

of the different estimators in terms of RMS, while the 

.632+ is the least biased. 

1. INTRODUCTION 

In this article we consider the binary classification 

problem, where a sample case ( , )i i it x y=  has the p -

dimensional feature vector ix , the predictor, and belongs 

to the class iy  where 1 2,iy = . Given a sample 
( ){ }: , , 1,2, ,i i i it t x y i n= = =t  consisting of n

cases, statistical learning may be performed on this 

training data set to design the prediction function 
( )0xt  to predict, i.e., estimate the class, 0y  of any 

future case 0 0 0( , )t x y=  from its predictor 0x .

One of the most important criteria in designing the 

prediction function ( )0xt  is the expected loss (risk) 

defined by: 

( )[ ]0 0 0( ) ( ),FR E L x y= t , (1) 

where F  represents the probability distribution of the 

data, L  is the loss function for misclassification, and 

0FE  is the expectation under the distribution F  taken 

over the testers 0 0( , )x y . The designed classifier assigns, 

for each value in the feature space, a likelihood ratio of 

the posterior probabilities conditional on the given 

feature vector. The classification ( )0xt  is decided by 

comparing the log of this likelihood ratio ( )0h xt  to the 

threshold value th , which is a function in the a priori

probabilities, 1P  and 2P , of the two classes and the 

costs. The decision ( )0xt  minimizes the risk if 

( )
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where ijc  is the cost of predicting class i  while the 

truth is class j  (see [1]). This minimum risk is given 

by: 

min 12 1 1 21 2 2R c Pe c P e= + , (3) 

where: 

1 1

2 2

( ( ) | ) ( ),

( ( ) | ) ( )
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h

h
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e f h x dh x

e f h x dh x

=

=
, (4) 

are the two probability areas, for the two types of 

misclassification, where hf  is the pmf of the likelihood 

ratio. See Figure 1. If the two costs and the a priori

probabilities are equal, i.e., the case of zero threshold, 

the value 1 2e e+  is simply called the true error rate or 

the probability of misclassification (PMC). 

In other environments, there will be different a priori

probabilities. Since the PMC depends on a single fixed 

threshold, it is not a sufficient metric for the more 

general problem. A more general way to assess a 

classifier is provided by the Receiver Operating 

Characteristic (ROC) curve. This is a plot for the two 

components of error, 1e  and 2e , under different 

threshold values. It is conventional in medical imaging 

to refer to 1e  as the False Negative Fraction (FNF), and 

2e  as the False Positive Fraction (FPF). This is because 

diseased patients typically have a higher output value for 

a test than non-diseased patients. For example, a patient 
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belonging to class 1 whose test output value is less than 

the threshold setting for the test will be called "test 

negative" while he or she is in fact in the diseased class. 

This is a false negative decision; hence the name FNF. 

The situation is vice versa for the other error component.  

Figure 1. The probability density of log-likelihood 

ratio conditional under each class. The two 

components of error are indicated as the FPF and 

FNF, the conventional terminology in medical 

imaging. 

Under the special case of normal distribution for the 

log-likelihood ratio ( )ht  the ROC curve can be 

expressed, using the inverse error function 

transformation, as: 

1 2 21 1

1 1

( )
( ) ( ) ( )TPF FPF

µ µ
= +  (5) 

This means that the whole ROC curve can be 

summarized in just two parameters: the intercept a , and 

the slope b ; this is shown in Figure 2. We frequently see 

the Central Limit Theorem at work in higher dimensions 

driving the ROC curve toward this condition. 

Figure 2. The double-normal-deviate plot for the 

ROC under the normal assumption for the log-

likelihood ratio is a straight line.  

Another important summary metric for the whole 

ROC curve, which does not require any assumption for 

the log-likelihood distribution, is the Area Under the 

ROC curve (AUC) that expresses, on average, how the 

decision function is able to separate the two classes from 

each other. The AUC is given formally by: 
1

0
( )AUC TPF d FPF=  (6) 

The two components of error in (4), or the summary 

metric AUC in (6), are the parametric forms of these 

metrics. That is, these metrics can be calculated by these 

equations if the posterior probabilities are known 

parametrically, e.g., in the case of the Bayes classifier or 

by parametric regression techniques. If the posterior 

probabilities are not known in a parametric form, the 

error rates can only be estimated numerically from a 

given data set, called the testing data set. This is done by 

assigning equal probability mass for each sample case, 

since this is the Maximum Likelihood Estimation (MLE) 

for the probability mass function under the 

nonparametric distribution, i.e., 

1ˆ : , 1,2,...,iF mass on t i N
N

=  (7) 

If 1 2,n n  are the data sizes of the two classes, i.e., 

1 2N n n= + , the true risk (3) will be estimated by: 

( )

( )

1 2
ˆ ˆ12 21( | ) ( | )

1

21 1 1 21 2 2
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I  is the indicator function defined by: 

1

0cond

cond is True
I

cond is False
=  (9) 

The AUC (6) can be estimated by the empirical area 

under the ROC curve, which can be shown to be equal to 

the Mann-Whitney statistic (a scaled version of the 

Wilcoxon rank sum test), which is given by: 

( ) ( )( )
2 1

1 2
1 2 1 1
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(10) 

2. MEAN AUC VS. DATA SET SIZE 

To exhibit the basic structure of the problem under 

the practical limitation of a finite-training set, we carried 

out simulations inspired by Chan et al. [2] and the work 

of Fukunaga [3, 4]. In our simulation, we assume that the 

)(1 TPF

)(1 FPF

1 2

1
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µ µ
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feature vector has the multinormal distribution with the 

following parameters: 1 20, 1cµ µ= = , and 

1 2= = I  where 0  is the vector all of whose 

components are zeros, 1  is the vector all of whose 

components are ones,  I  is the identity matrix, and c  is 

a constant. A fundamental metric is the Mahalanobis 

distance between the mean vectors of the two classes: it 

is defined as: 

[ ]
1/21

1 2 1 2( ) ( )µ µ µ µ=  (11) 

It expresses how these two vectors are separated from 

each other with respect to the spread . In the 

simulation of the present example, the Mahalanobis 

distance is 2c p . In this simulation, illustrated in Figure 

3, the value c  is adjusted for every dimensionality to 

obtain the same asymptotic AUC. This allows us to 

isolate the effect of the variation in training set sizes. 

Typically, the simulations described in this context used 

a value of 0.8 for . For the time being, it is assumed 

that 1 2n n n= = , which is referred to as the training 

set size per class. For a particular dimensionality, and for 

particular data set size n , two training data sets are 

generated using the above parameters and distributions. 

When the classifier is trained, it will be tested on a 

pseudo-infinite test set, here 1000 cases per class, to 

obtain a very good approximation to the true AUC for 

the classifier trained on this very training data set; this is 

called a single realization or a Monte-Carlo (MC) trial.  

Figure 3. Mean AUC of the Bayes classifier. For 

every training sample size n , the classifier is tested 

on pseudo-infinite testers (represented as "ts") and 

tested as well on the same training sample ( 

represented as "tr"). Each curve shows the average 

performance over 100 MC trials. The numbers in the 

legend are the dimensionalities of the feature vectors. 

Many realizations of the training data sets with same n

are generated over MC simulation to study the mean and 

variance of the AUC for the Bayes classifier under this 

training set size. The number of MC trials used is 100.   

Several important observations can be made from 

these results. As was expected, for training size n  the 

mean apparent AUC, i.e., coming from testing on the 

same training data set, is upwardly biased from the true 

AUC. It should be cautioned that this is on the average, 

i.e., over the population of all training sets; it is possible 

that for a single data set (single realization) the apparent 

performance can be better or worse than the true one. In 

addition, the classifier had the same asymptotic 

performance, approximately 0.74, for all 

dimensionalities in the simulation (by design as above).  

3. NONPARAMETRIC INFERENCE 

FOR THE TRUE ERROR RATE 

In the previous sections, it was assumed that there is a 

separate data set, i.e., the testing data set, to estimate the 

performance metric, either Err or AUC, using (8) or (10) 

respectively. In real life problems, there is scarcity of 

data, i.e., only a small training set size is available. 

Moreover, the data distribution is unknown, so that 

neither the formulas (4) or (6) can be used directly nor a 

testing data set can be simulated to assess the 

classification rule.  

The conventional method for estimating the true error 

rate (1) is the so-called method of cross validation. The 

method relies on dividing the available data set into k-

fold sub-sets with equal sizes. Training is carried out on 

all of them but one, on which testing is performed. This 

is carried out k times, each time one of the k subsets is 

used for testing, then the results from the k tests are 

averaged. A thorough discussion of the method can be 

found in [5]. An improvement on cross validation was 

produced by Efron [6] by proposing the .632 bootstrap 

estimator 
( ).632

Err  given by: 
( ).632 1

.368 .632Err Err Err= +t t t , (12) 

where the estimator Err t  is the apparent error rate 

obtained by testing the classifier on the same training 

data set. Formally: 

( )
1 2

ˆ

ˆ ˆ( | ) ( | )
1

( , ( )), ( , )

1
i i

F

n

h x th h x th
i

Err E L y x x y

I I
n < >
=

=

= +
t t

t t t

 (13) 

The estimator 
( )1

Err t  is the leave-one-out bootstrap 

estimator calculated by: 

( )

*

1

1 1 1

1
( , ( ))/b

n B B
b b
i i i i

i b b

Err I L y x I
n = = =

=t
t

 (14) 
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where B  bootstraps are replicated from the available 

data set and the classifier is trained on each. After each 

training, the classifier is tested only on those cases in the 

original data set that did not appear in the bootstrap 

replicate used for training. The notation biI  is used as an 

indicator function that equals one if the case sample it  is 

not included in the bootstrap replicate b , and zero 

otherwise. The value .632 in (12) is the effective number 

of cases contained within the bootstrap replications. That 

means the .632 bootstrap trains on .632n  where n  is 

the original data set size; the matter that makes it more 

biased than the cross validation. 

Later in 1997, Efron and Tibshirani [7] proposed the 

.632+ bootstrap estimator that was considered to be a 

further improvement on the .632 estimator. It was 

designed to decrease the bias of the .632 bootstrap, 

which apparently exists in the case of an overtrained 

classifier, e.g., the 1-nearest-neighbor classifier. The 

.632+ estimator is given by 
( ) ( )

( )

.632 .632

1 ˆ.368 .632
( )

ˆ1 .368

Err Err

R
Err Err

R

+
= +t t

t t

 (15) 

where R̂  is the corrected relative over fitting, i.e., a 

modified measure of the relative over-fitting that is used 

to renormalize the factor 0.632 for that case (see [7] for 

details). 

Efron and Tibshirani [7] carried out different 

experiments to compare different estimators of the error 

rate. These estimators include, among others, cross 

validation, 
( )1

Err ,
( ).632

Err , and 
( ).632

Err
+

. It was 

apparent that the .632+ is the winner in terms of the bias. 

In terms of the RMS error, the estimators were 

comparable with a little superiority for the .632+.  

4. NONPARAMETRIC INFERENCE 

FOR THE AUC 

In the present article, we extend the study carried out 

in [7] to include the AUC as the performance metric. 

Similar work has been done by considering the .632 

bootstrap and the leave-one-out cross validation [8]  

4.1.  Mathematical Definitions 

Analogously to 
( )1

Err , we can test on those cases 

that were not included in each bootstrap replicate and 

produce a single estimate of the AUC, then average over 

the whole set of bootstrap replicates. This gives the 

estimator 

( ) ( )
*

2 1

* *

1 2

* *

1

1 1

1

1 1

1 ˆ( )

ˆ ˆ( ( ), ( ))
1

b

B

b

n n
b b
i j i jB

j i
n n

b bb
i j

i j

AUC AUC F
B

I I h x h x

B
I I

=

= =

=

= =

= =t
t

t t
 (16) 

The AUC .632 estimator is defined analogously to 
( ).632

Err t  as: 
( ).632 *

.368 .632AUC AUC AUC= +t t t  (17) 

and the .632+ is defined by: 
( ) ( )

( )

.632 .632

* ˆ.368 .632
( )

ˆ1 .368

AUC AUC

R
AUC AUC

R

+
= +t t

t t

(18) 

where  

( ) ( )

( )

( )

* *

*

*

max( , ),

( )/( ),

ˆ

0

AUC

AUC

AUC

AUC AUC

AUC AUC AUC

R ifAUC AUC

otherwise

=

= > >

t t

t t t

t t

 (19) 

The no-information AUC AUC  can be shown to be 

equal to 0.5. 

4.2.  Experimental Results 

We carried out different experiments to compare 

these three bootstrap-based estimators, considering 

different dimensionalities, different parameter values, 

and training set sizes, all based on the multinormal 

assumption for the feature vector. The experiments are 

described in Section  2. Here in this section we illustrate 

the results when the dimensionality was five. The 

number of trainer groups per point (the number of MC 

trials) is 1000 and the number of bootstraps is 100. 

It is apparent from Figure 4 that the 
( )*

AUC t  is 

downward biased. This is a natural opposite of the 

upward bias observed in [7] when the metric was the true 

error rate as a measure of incorrectness, by contrast with 

the true AUC as a measure of correctness. The 
( ).632

AUC t  is designed as a correction for 
( )*

AUC t ; it 

appears in the figure to correct for that but with an over-

shoot. The correct adjustment for the remaining bias is 

almost achieved by the estimator 
( ).632

AUC
+

t . The 
( ).632

AUC t  estimator can be seen as an attempt to 

balance between the two extreme biased estimators,  
( )*

AUC t  and AUC t .
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Figure 4. Comparison of the three bootstrap 

estimators, 
( )*

AUC t ,
( ).632

AUC t , and 
( ).632

AUC
+

t  for 

5-feature predictor. The 
( )*

AUC t  is downward 

biased, while the 
( ).632

AUC t  is an over correction for 

that bias. 
( ).632

AUC
+

t  is almost the unbiased version 

of the 
( ).632

AUC t .

Estimator Mean SD RMS Size

AUC t .6181 .0434 .0434 
( )*

AUC t .5914 .0947 .0984 
( ).632

AUC t .7012 .0749 .1119 
( ).632

AUC
+

t .6431 .0858 .0894 

AUC t .8897 .0475 .2757 

20

AUC t .6571 .0308 .0308 
( )*AUC t .6244 .0711 .0783 
( ).632

AUC t .6981 .0598 .0725 
( ).632

AUC
+

t .6595 .0739 .0739 

AUC t .8246 .0431 .1730 

40

AUC t .6965 .0158 .0158 
( )*AUC t .6738 .0454 .0507 
( ).632

AUC t .7119 .0399 .0428 
( ).632

AUC
+

t .7004 .0452 .0453 

AUC t .7772 .0312 .0866 

100

AUC t .7141 .0090 .0090 
( )*

AUC t .6991 .0298 .0334 
( ).632

AUC t .7205 .0272 .0279 
( ).632

AUC
+

t .7170 .0285 .0286 

AUC t .7573 .0228 .0489 

200

Table 1. Comparison of the bias and variance for 

different bootstrap-based estimators of the AUC. The 

effect of the training set size is obvious in the 

variability of the true AUC. 

Table 1 gives a comparison for the different 

estimators in terms of the RMS values. The RMS is 

defined in the present context as the root of the mean 

squared difference between an estimate and the 

population mean, i.e., the mean over all possible training 

sets.

4.3.  Remarks 

As shown by Efron and Tibshirani [7], the 
( )1

Err t
estimator is a smoothed version of the leave-one-out 

cross validation, since for every test sample case the 

classifier is trained on many bootstrap replicates. This 

reduces the variability of the cross-validation based 

estimator. On the other hand, the effective number of 

cases included in the bootstrap replicates is .632 of the 

total sample size n . This accounts for training on a less 

effective data set size; this makes the leave-one-out 

bootstrap estimator (
( )1

Err ) more biased than the leave-

one-out cross-validation. This bias issue is observed in 

[8], as well, when the performance metric was the AUC. 

This fact is illustrated in Figure 5 for 
( )

AUC t . At every 

sample size n  the true value of the AUC is plotted. The 

estimated value 
( )

AUC t  at data sizes of /.632n  and 

/.5n  are plotted as well. It is obvious that these values 

are lower and higher than the true value respectively, 

which supports the discussion of whether the leave-one-

out bootstrap is supported on 0.632 of the samples or 0.5 

of the samples (as mentioned in [7]) or, as here, 

something in-between. 

Figure 5.The true AUC and rescaled versions of the 

bootstrap estimator 
( )

AUC t . At every sample size n
the true AUC is shown along with the value of the 

estimator 
( )

AUC t  at /.632n  and /.5n .

The estimators studied here are used to estimate the 

mean performance (AUC) of the classifier. However, the 

basic motivation for the  
( )632

AUC t  and 
( )632

AUC
+

t  is 

to estimate the AUC conditional on the given data set t .

This is the analogue of 
( )632

Err t  and
( )632

Err
+

t .
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Nevertheless, as mentioned in [7] and detailed in [9] the 

cross-validation, the basic ingredient of the bootstrap 

based estimators, is weakly correlated with the true 

performance on a sample by sample basis. This means 

that no estimator has a preference in estimating the 

conditional performance. 

Work in Progress includes analysis of alternative 

expressions for the bootstrap estimators; an analysis of 

their smoothness properties; analysis of the correlation 

(or lack of it) referred to above; finite-sample estimates 

of the uncertainties of these estimators; and comparison 

of these results with the components-of-variance model 

of [10] 

5. CONCLUSION 

The bootstrap based estimators proposed in the 

literature are extended to estimate the AUC of a 

classifier. They have comparable performance in terms 

of the RMS of AUC, while the 
( )632

AUC
+

t  is the least 

biased.
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