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Support Vector Machines for
Histogram-Based Image Classification

Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik

Abstract— Traditional classification approaches generalize ~ This paper follows an experimental approach, and its or-
poorly on image classification tasks, because of the high ganization unfolds as increasingly better results are obtained
dimensionality of the feature space. This paper shows that {hyq,gh modifications of the SVM architecture. Section I

support vector machines (SVM's) can generalize well on difficult . L . , . .
image classification problems where the only features are provides a brief introduction to SVM'’s. Section Il describes

high dimensional histograms. Heavy-tailed RBF kernels of the image recognition problem on Corel photo images. Section
the form K(x,y) = e P2 1P vE Y With < 1andb < 2 IV compares SVM and KNN-based recognition techniques
are evaluated on the classification of images extracted from which are inspired by previous work. From these results,
the Corel stock photo collection and shown to far outperform Section V explores novel techniques, by either selecting the
traditional polynomial or Gaussian radial basis function (RBF) gy\ kernel, or remapping the input, that provide high image

kernels. Moreover, we observed that a simple remapping of the . . . -
input z; — 2% improves the performance of linear SVM's to recognition performance with low computational requirements.

such an extend that it makes them, for this problem, a valid

alternative to RBF kemnels. Il. SUPPORT VECTOR MACHINES

Index Terms—Corel, image classification, image histogram,

radial basis functions, support vector machines. A. Optimal Separating Hyperplanes

We give in this section a very brief introduction to SVM's.
. INTRODUCTION Let (x;,:)1<i<n be a set of training examples, each example
ARGE collections of images are becoming available t8; € R*, d being the dimension of the input space, belongs
the public, from photo collections to Web pages or eveie a class labeled by; € {—1,1}. The aim is to define a
video databases. To index or retrieve them is a challenge whityperplane which divides the set of examples such that all
is the focus of many research projects (for instance IBMtie points with the same label are on the same side of the
QBIC [1]). A large part of this research work is devoted tdyperplane. This amounts to findirng andb so that
finding suitable representations for the images, and retrieval
generally involves comparisons of images. In this paper, we yi(w - % +b) >0, =1 N 1)
choose to use color histograms as an image representatio . o . .
because of the reasonable performance that can be obtaineli €€ €xIsts a hyperplane satisfying (1), the set is said
in spite of their extreme simplicity [2]. Using this histogramto be linearly separableIn this case, it is always possible to
representation, our initial goal is to perform generic objeé?scalew and b so that
classification W_ith a “Win_ner takes aII"_ approach: find the one min (W x; +0) > 1, i=1-- N
category of object that is the most likely to be present in a 1<<N
given image.

From classification trees to neural networks, there are m
possible choices for what classifier to use. The support vec
machine (SVM) approach is considered a good candidate
because of its high generalization performance without the

nee(_j to adch priqri knowle_dge, even when the dimension of Among the separating hyperplanes, the one for which the

the input space is very high. _ _ distance to the closest point is maximal is calleptimal
Intuitively, given a set of points which belongs to eitheggparating hyperplan€OSH). Since the distance to the closest

one of two classes, a linear SVM finds the hyperplane Ieavn&gim is1/||w]|, finding the OSH amounts to minimizirjv |2

the largest possible fraction of points of the same class on {heyer constraints Q).

same side, while maximizing the distance of either class frompq quantity2/||w]| is called the margin, and thus the OSH

the hyperplane. According to [3], this hyperplane minimizeg {he separating hyperplane which maximizes the margin. The

in?r' so that the distance between the closest point to the
poerplane isl/||wl|. Then, (1) becomes

yi(w-x; +b) > 1. )

the risk of misclassifying examples of the test set. margin can be seen as a measure of the generalization ability:
the larger the margin, the better the generalization is expected
Manuscript received January 21, 1999; revised April 30, 1999. to be [4], [5].
The authors are with the Speech and Image Processing Services Researc§. 9 . L . .
Laboratory, AT&T Labs-Research, Red Bank, NJ 07701 USA. ince||w]|* is convex, minimizing it under linear constraints
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by o = (a1, -+ -, ) the N non negative Lagrange multipli- If we replacex by its mapping in the feature spadex),
ers associated with constraints (2), our optimization problef8) becomes
amounts to maximizing

N N
1
N 1 N W(a) = Z a; — 5 Z OéZOéJyZyJ@(XZ) . @(XJ)
W(a) = Z o; — 5 Z QOG5 Y Y X - Xy (3) i=1 i,j=1
=t BI=t If we have K(x;,x;) = ®(x;) - ®(x;), then only K is

with a. > 0 and under constrainEN yic; — 0. This can needed in the training algorithm and the mappfds never

be acr:ie_ved by the use of standa{rzdl }qzu;;dratic programmle licitly used. Conversely, given a symmetric positive kernel

methods [6] x,y), Mercer's theorem [3] indicates us that there exists a
' mapping® such thatk (x,y) = ®(x) - &(y).

0 _ o ... 0 i i-
.Onpe the vector” = (a3, - -+, ayy) solution of the maxi Once a kernelK satisfying Mercer's condition has been
mization problem (3) has been found, the O8ky, by) has L . . L
chosen, the training algorithm consists of minimizing

the following expansion:

i,j=1

N N
N 1
Wo = Za?yzxz 4 (Oé) ; @ 2 Z QYY) (X XJ) (8)
=1

) ) ) and the decision function becomes
The support vectorsre the points for whiclk? > 0 satisfy

. . N
(2) with equality. o - ‘

Considering the expansion (4) efy, the hyperplane deci- f(x) = sgn Z iy K (xi, %) +0 ). (9)
sion function can thus be written as =

() SVM'’s are designed for binary classification. When dealing
with several classes, as in object recognition and image
classification, one needs an appropriate multiclass method.
Different possibilities include the following.

When the data is not linearly separable, we introduce slack, Modify the design of the SVM, as in [9], in order

variables(&y, - -+, &) with & > 0 [7] such that to incorporate the multiclass learning directly in the

. guadratic solving algorithm.
. T >1-—¢. =1, . h i .
vi(wexi +0) 2 1=, =1, N 6) » Combine several binary classifiers: “One against one”
[10] applies pairwise comparisons between classes, while

N D. Multiclass Learning
fx) = sgn(Z a?yixi -X 4+ b0> .

=1

B. Linearly Nonseparable Case

to allow the possibility of examples that violate (2). The ! ) N . .
purpose of the variableg; is to allow misclassified points, One against the others” [11] compares a given class with
which have their corresponding > 1. Therefore)_¢; is an all the others put together.

upper bound on the number of training errors. The generalizedAccording to a comparison study [9], the accuracies of these
OSH is then regarded as the solution of the following problerfitethods are almost the same. As a consequence, we chose the

minimize one with the lowest complexity, which is “one against the
N others.”
1 o ‘ ‘ ) In the “one against the others” algorithm hyperplanes are
oW W + Z §i constructed, where is the number of classes. Each hyperplane

=1

separates one class from the other classes. In this way, we get
subject to constraints (6) ang, > 0. The first term is n decision functiong fi)1<k<, of the form (5). The class of
minimized to control the learning capacity as in the separal@enew pointz is given byargmax; fi(x), i.e., the class with
case; the purpose of the second term is to control the numbettf largest decision function.
misclassified points. The parametgris chosen by the user, a We made the assumption that every point has a single label.
largerC' corresponding to assigning a higher penalty to errofdevertheless, in image classification, an image may belong
SVM training requires to fixC' in (7), the penalty term to several classes as its content is not unique. It would be
for misclassifications. When dealing with images, most g¢fossible to make multiclass learning more robust, and extend
the time, the dimension of the input space is large1000) it to handle multilabel classification problems by using error
compared to the size of the training set, so that the trainiegrrecting codes [12]. This more complex approach has not
data is generally linearly separable. Consequently, the valeen experimented in this paper.
of C has in this case little impact on performance.

I1l. THE DATA AND ITS REPRESENTATION

C. Nonlinear Support Vector Machines Among the many possible features that can be extracted

The input data is mapped into a high-dimensiofegture from an image, we restrict ourselves to ones which are global
spacethrough some nonlinear mapping chosepriori [8]. In  and low-level (the segmentation of the image into regions,
this feature space, the OSH is constructed. objects or relations is not in the scope of the present paper).
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The simplest way to represent an image is to consider 80 images. For our experiments, the original 200 categories
bitmap representation. Assuming the sizes of the imageshave been reduced using two different labeling approaches.
the database are fixed th x w (h for the height andw In the first one, namedorel14 we chose to keep the cat-

for the width), then the input data for the SVM are vectoregories defined by Corel. For the sake of comparison, we
of size h x w for grey-level images and>3» x w for color chose the same subset of categories as [13], which are:
images. Each component of the vector is associated to a piagl shows, bears, elephants, tigers, Arabian horses, polar
in the image. Some major drawbacks of this representatibaars, African specialty animals, cheetahs-leopards-jaguars,
are its large size and its lack of invariance with respebtld eagles, mountains, fields, deserts, sunrises-sunsets, night
to translations. For these reasons, our first choice was gwmeneslt is important to note that we hatb influenceon the

histogram representation which is described presently. choices made irCorell4 the classes were selected by [13]
] and the examples illustrating a class are the 100 images we
A. Color Histograms found in a Corel category. In [13], some images which were

In spite of the fact that the color histogram technique is\dsually deemed inconsistent with the rest of their category
very simple and low-level method, it has shown good results Were removed. In the results reported in this paper, we use all
practice [2] especially for image indexing and retrieval task400 images in each category and kept many obvious outliers:
where feature extraction has to be as simple and as fastsae for instance, in Fig. 2, the “polar bear alert” sign which is
possible. Spatial features are lost, meaning that spatial relatieagsidered to be an image of a polar bear. With 14 categories,
between parts of an image cannot be used. This also ensuhésresults in a database of 1400 images. Note that some Corel
full translation and rotation invariance. categories come from the same batch of photographs: a system

A color is represented by a three dimensional vector corrgained to classify them may only have to classify color and
sponding to a position in a color space. This leaves us to selesposure idiosyncracies.
the color space and the quantization steps in this color spacén an attempt to avoid these potential problems and to
As a color space, we chose the hue-saturation-value (HIWpve toward a more generic classification, we also defined
space, which is in bijection with the red—green—blue (RGB) second labeling approadprel?, in which we designed our
space. The reason for the choice of HSV is that it is widel§wn seven categoriesirplanes, birds, boats, buildings, fish,
used in the literature. people, vehiclesThe number of images in each category varies

HSV is attractive in theory. It is considered more suitablgom 300 to 625 for a total of 2670 samples.
since it separates the color components (HS) from the lu-For each category images were hand-picked from several
minance component (V) and is less sensitive to illuminatigeriginal Corel categories. For example, ieplanescategory
changes. Note also that distances in the HSV space correspmstlides images ddir shows, aviation photography, fighter jets
to perceptual differences in color in a more consistent wapnd WW-II planes The representation of what is an airplane
than in the RGB space. is then more general. Table | shows the origin of the images

However, this does not seem to matter in practice. All tHer each category.
experiments reported in the paper use the HSV space. For
the sake of comparison, we have selected a few experiments
and used the RGB space instead of the HSV space, while
keeping the other conditions identical: the impact of the choice
of the color space on performance was found to be minimél
compared to the impacts of the other experimental conditionsThe design of the SVM classifier architecture is very simple
(choice of the kernel, remapping of the input). An explanaticand mainly requires the choice of the kernel (the only other
for this fact is that, after quantization into bins, no informatioparameter iC). Nevertheless, it has to be chosen carefully
about the color space is used by the classifier. since an inappropriate kernel can lead to poor performance.

The number of bins per color component has been fixddiere are currently no techniques available to “learn” the form
to 16, and the dimension of each histogramlé = 4096. of the kernel; as a consequence, the first kernels investigated
Some experiments with a smaller number of bins have bewere borrowed from the pattern recognition literature. The
undertaken, but the best results have been reached withkégnel products between input vectotsandy are
bins. We have not tried to increase this number, because it
is computationally too intensive. It is preferable to compute Kpoy(x,y) = (x-y +1)°
the histogram from the highest spatial resolution available. KGaussian(X,y) = e Pll=ylz
Subsampling the image too much results in significant losses
in performance. This may be explained by the fact that by K, results in a classifier which has a polynomial decision
subsampling, the histogram loses its sharp peaks, as pixgiction. Kq.usian 0ives a Gaussian radial basis function
colors turn into averages (aliasing). (RBF) classifier. In the Gaussian RBF case, the number of

. . centers (number of support vectors), the centers themselves
B. Selecting Classes of Images in the Corel (the support vectors), the weights;) and the thresholdb)
Stock Photo Collection are all produced automatically by the SVM training and give

The Corel stock photo collection consists of a set @xcellent results compared to RBF's trained with non-SVM’s

photographs divided into about 200 categories, each one witiethods [14].

IV. SELECTING THE KERNEL

Introduction
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Fig. 1. Corell4: each row includes images from the following seven categories: air shows, bears, Arabian horses, night scenes, elephants, bald eagle
cheetahs-leopards-jaguars.

Encouraged by the positive results obtained Wih....csian,  Of %>
we looked at generalized forms of RBF kernels

i + ¥

2

d(x,y) = Z w
K — o rdxy) !

a-RBF(X,y) = ¢ It is not known if the kernel satisfies Mercer’s conditibn.

Another obvious alternative is thi, distance, which gives
wherel(x,y) can be chosen to be any distance in the inpat Laplacian RBF
space. In the case of images as input, fhenorm seems to dr, (x,y) = Z s — ;).
be quite meaningful. But as histograms are discrete densities, S e

more suitable comparison functions exist, especially the o ) o
Lt is still possible apply the SVM training procedure to kernels that do not

funct|on_, which has been used eXtens'Vely for h'St_()gra_Egtisfy Mercer’'s condition. What is no longer guaranteed is that the optimal
comparisons [15]. We use here a symmetrized approximatigfperplane maximizes some margin in a hidden space.

%
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Fig. 2. Corell4: each row includes images from the following seven categories: Tigers, African specialty animals, mountains, fields, deserts, sun-
rises-sunsets, polar bears.

B. Experiments heuristically. More rigorous procedures will be described in

The first series of experiments are designed to rougHfye second series of experiments.
assess the performance of the aforementioned input represerd@ble Il shows very similar results for both the RBG
tations and SVM kernels on our two Corel tasks. The 14@hd HSV histogram representations, and also, with HSV
examples ofCorell4were divided into 924 training exampleshistograms, similar behaviors betwe@wvrel14 and Corel7.
and 476 test examples. The 2670 exampleCofel7 were The “leap” in performance does not happen, as normally
split evenly between 1375 training and test examples. TR&pected by using RBF kernels but with the proper choice of
SVM error penalty parameter was set to 100, which can bemetric within the RBF kernel. Laplacian o’ RBF kernels
considered in most cases as “large.” However, in this seriggluce the Gaussian RBF error rate from around 30% down
of experiments, this parameter setting was found to enforise 15-20%.
full separability for all types of kernels except the linear one. This improved performance is not only due to the choice of
In the cases of the RBF kernels, thevalues were selectedthe appropriate metric, but also to the good generalization of
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TABLE |
HAND-LABELED CATEGORIES USED WITH THE COREL DaTABASE
[ Category | Number of images | Corel Categories
Airplanes 386 air-shows, aviation-photography, fighter-jets, WW-II-planes
Birds 501 birds, birds2, hawks-falcons, nesting-birds, bald-eagles
Boats 200 action-sailing, sailboats,
Buildings 625 Alaska, Australia, Austrian, barns-farms, big-apple,

Scotland, churches, cities-of-Italy, Egypt, Germany,
pyramids, Los Angeles, Ottawa, Rome, sacred-places

Fish 300 beneath-the-Caribbean, ocean-life, underwater-life
People 358 arctic, Brazil, China-Tibet, indigenous people, people,
people-of-the-world, models, rural-africa, rural-France, southeast-Asia
Vehicles 300 auto-racing, exotic-cars, military-vehicles
TABLE || original histogramx, the kernel values are
ERROR RATES UsING THE FOLLOWING KERNELS LINEAR, POLYNOMIAL OF , —2p(P—0)> —o,p?
DEGREE 2, GaussiAN RBF, LapLAciAN RBF AND X2 RBF KGaussian(Xax) =c 7 = -f
Database || Input | linear | Poly 2 RBF KLaplacian(xa X/) = 6_2plp_0| = C_QPP
Gaussian | Laplacian | x° (P—0)?
-2 —
Corell; | RGB | 421 | 336 28.8 147 | 147 Ky _rpr(x,X) = e 2 70 =20,
%mll];‘ ESX ig'i 22'3 ig; ;3'2 ;1'; The kernel has a linear exponential decay in the Laplacian
L Core 7] 38 2| 5 [216] ang x2 cases, while it has a quadratic exponential decay in
the Gaussian case.
TABLE Il
ERROR RATES wiTH KNN V. KERNEL DESIGN VERSUSINPUT REMAPPING
KNN L; | KNN ¥2 The experiments performed in the previous section show
Corell4 47.7 26.5 that non-Gaussian RBF kernels with exponential decay rates
Corel? 51.4 35.4 that are less than quadratic can lead to remarkable SVM

classification performances on image histograms. This section

SVM’s. To demonstrate this, we conducted some experimef§lores two ways to reduce the decay rate of RBF kernels. It
of image histogram classification with a K-nearest neighbof§0Ws that one of them amounts to a simple remapping of the
(KNN) algorithm with the distances? and L,. K = 1 gave input, in which case the use of the kernel trick is not always
the best results. Table Ill presents the results. As expected, fig&essary.
X2_distance is better sgited; theé-based SVM is still roughly A Non-Gaussian RBF Kernels
twice as good as thg=-based KNN.

We also did some experiments using the pixel image as inputVe introduce kernels of the formi(x,y) = ¢~/ ()
to SVM classifiers with 96x 64 images. Except in the linearWith
case, the convergence of the support vector search process was do (%, y) = Z |$q _ Uq|b'
problematic, often finding a hyperplane where every sample is o - v
a support vector. The error rate never dropped below 45%.

The same database has been used by [13] with a decisiofhe decay rate around zero is given kb ,(x,0) =
tree classifier and the error rate was about 50%, similar to the; [#:/*’. In the case of Gaussian RBF kernels, = 2:
47.7% error rate obtained with the traditional combination éfecreasing the value af would provide for a slower decay.
an HSV histogram and a KNN classifier. The 14.7% error rate A data-generating interpretation of RBF's is that they corre-

obtained with the Laplacian o> RBF represents a nearlysPond to a mixture of local densities (generally Gaussian): in
four-fold reduction. this case, lowering the value bimounts to using heavy-tailed

One partia] exp]anation for the Superior performance(%f distributions. Such distributions have been observed in SpeeCh

or Laplacian RBF kernels comes from the specific nature cognition and improved performances have been obtained
the histogram representation. Let us start with an example:ai moving fromb = 2 (Gaussian) tdh = 1 (Laplacian) or
many images, the largest coordinate in the histogram vecgfent = 0.5 (Sublinear) [16]. Note that if we assume that
corresponds to the blue of the sky. A small shift in the coldlistograms are often distributed around zero (only a few bins
of the sky, which does not affect the nature of the object flve nonzero values), decreasing the value should have
be recognized (for instance plane or bird) results into a lar§ughly the same impact as lowering
L, distance.

Suppose &-pixel bin in the histogram accounts for a single .
uniform color region in the image (with histograg). A small dab,c(X,y) = (Z |7 — yflb> :
change of color in this region can move tif pixels to a i

nelghbonng bin, resultlng 'n_a S“ghtly fjn‘ferent h|StOgranbecreasing the value of does not improve performance as much as
x’. If we assume that this neighboring bin was empty in thecreasing: andb, and significantly increases the number of support vectors.

2An even more general type of Kernel i(x,y) = e~Pdab.c(x2Y) with
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Fig. 3. Corel7: each row includes images from the following categories: airplanes, birds, boats, buildings, fish, people, cars.

The choice ofa has no impact on Mercer’s condition as iincrease the size of the object by some scaling fagtahe

amounts to a change of input variables. number of pixels is multiplied by?, andz.. is multiplied
e~r(Ix=¥D)" satisfies Mercer's condition if and only if < by the same factor. The-exponentiation could lower this
b < 2 ([4] page 434). quadratic scaling effect to a more reasonaiifg with o < 1.
) ] An interesting case i = 0, which transforms all the
B. Nonlinear Remapping of the Input components which are not zero to one (we assume that

The exponentiation of each component of the input vectéf = 1).
by a does not have to be interpreted in terms of kern
products. One can see it as the simplest possible nonlin
remapping of the input that does not affect the dimension. To avoid a combinatorial explosion of kernel/remapping

The following gives us reasons to believe that combinations, it is important to restrict the number of kernels
exponentiation may improve robustness with respect wee try. We chose three types of RBF kernels: Gaussian
changes in scale. Imagine that the histogram compongnt (b = 2), Laplacian(b = 1) and Sublinearb = 0.5). As a
is caused by the presence of cotmi in some object. If we basis for comparison, we also kept the linear SVM's.

| .
garExperlmental Setup
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For the reasons stated in Section IIl.A, the only image TABLE IV
representation we consider here is the 16l6x 16 HSV AVERAGE ERROR RATES ON CorEL14. EACH CoLUMN CORRESPONDS TO A
histoaram DIFFERENT KERNEL. THE FIRST LINE REPORTS THEAVERAGE NUMBER OF
IStogram. ) ) ) . SUPPORT VECTORS REQUIRED FOR THEFULL RECOGNIZER (i.€., 14 “ONE
Our second series of experiments attempts to define a rigorAcainst THe OTHERS SVM CLASSIFIERY. THE NEXT LINES REPORT THE

ous procedure to choog@a andp. Because we are onIy testing ERROR RATES USING NONLINEAR INPUT REMAPPINGS (EXPONENTIATION BY a)

linear and RBF kernels, we can reduce these two choices to [ Kernel || linear RBF
one, a multiplicative renormalization of the input data. Gaussian | Laplacian | Sublinear

In the case of RBF kernels, we observed experimentally b=2 b=1 b=05
that full separability was always desirable on b&tbrel7 and NS‘I’ z(;zj 233;077 | 3;3;32 ?;:;]53 I
Corell4 As a consequencé; has to be chosen large enough aa:_o 5 595 kA 27 2.6
(C' = 300) compared to the diameter of the sphere containing a=095 I 153 30 110 54
the input data (The distance betweenand 4 is equal to a=0.125 || 14.3 12.0 1.5 12.5
K(z,z)—2K(z,y)+K(y,y) = 2—2K(x,y), which is always a=00 | 184 16.5
smaller than 2.0). However, RBF kernels still do not specify
Wha_t value to choose fop. With proper renormalization of TABLE V
the input data, we can set= 1 as AVERAGE ERROR RATES ON COREL?

a_ alb N (s )| .
eipzi i . e Zi |Az:)® —(Ava)?| with A = pﬁ . Kernel || linear RBF
. . Gaussian | Laplacian | Sublinear

In the linear case, the diameter of the data depends on the b=2 If):l b=0.5
way it is normal_ize_d. _The choice of’ is equiva_lent to the Nov 3567 || 4137 | 5127 | 5418 |
choice of a multiplicative factod = % for the input data. a=1 125 104 228 19.2
If, in (6), we replacex; with Ax; andw with w’ = ¥, (7) a=0.5 28.4 21.2 17.4 18.5
becomes a=0.25 || 236 17.6 16.3 18.8

a=0.125 || 26.9 28.6 19.0 193
a=0.0 33.2 24.2

N
1 / /
SV W +;§i. (10)

o _ N _ perform an operation depends on the machine, we count the
Similar experimental conditions are applied to baibrel7  three main types of operations we find in our SVM classifiers.
and Corel14 Each category is divided into three sets, each f; pasic floating point operation such as the multiply-add
containing one third of the images, used as training, validationy, ne computation of the absolute value of the difference

and test sets. For each value of the input renormalizationyeyeen two vector components. This is the central opera-
support vectors are obtained from the training set and testeqig, of the kernel dot product. This operation can be avoided

on the validation set. The renormalization for which we if both components are zero, but we assume that verifying
obtain the best result is then used to obtain a set of supporfhis condition usually takes more time than the operation
vectors from both, the training and the validation sets. EaChitseIf The computation ofz; — y;)? can be reduced to a

. ? T

Corel image containgdd = 372992 usable pixels: the 4096 multiply-add asz? and 4?2 can be computed in advance.
histogram vector components range from @fcand sum up to sqrt  square roz)t !

M. They were renormalized with € {107*, 101072, 1, 10?}. exp exponential

Usually., the optimal values are 16 or 1. anoptlmal)\ Except in the sublinear RBF case, the numbeflof is
values increase the error rate by values ranging from 0.5%,t0 o ; . .
the dominating factor. In the linear case, the decision function

5%. This very sparse sampling rate was found to be suffici\exlg allows the support vectors to be linearly combined: there
for all kernels except Gaussian RBF's. In the latter case, \ pp y '

chose) € {10-*,0.0025, 0.01, 0.04, 0.16, 1, 1P is"only oneflt  per class and component. In the RBF case,

The final performance result is measured on the test thtgre is oneflt — per class, component and support vector.

To obtain more test samples, we applied this procedure three 2 us€ of the normalization by ¥ 4096, the number that

times, each time with a different test set: the number of testia pears on the table equals the number of support vectors.

samples is the total number of data (1400Garel14and 2670 c.tuat|ons of th's number are mostly caused by changes in
the input normalizatiom.

for Corel7). On Corell4 each of the three training sessions . : i
used 933 examples and required between 52 and 528 suppolrn the sublinear RBF case, the numbersafit is dom

nating. sqrt is in theory required for each component of
vectors to separate one class from the othersComl7, each 9-59 o y red P .
- : the, kernel product: this is the number we report. It is a
of the three training sessions used 1780 examples and required . ~. - . . .
essimistic upper bound since computations can be avoided
between 254 and 1008 support vectors to separate one ¢ 4SS omponents with value zero
from the others. The algorithms and the software used to train P '

the SVM’s were designed by Osuna [17], [18]. )
E. Observations

D. Computation Requirements The analysis of the Tables IV-VI shows the following

We also measured the computation required to classify otiearacteristics that apply consistently to bdflorel14 and
image histogram. Since the number of cycles required @orel7.
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TABLE VI
COMPUTATIONAL REQUIREMENTS FORCOREL7, REPORTED AS THENUMBER OF OPERATIONS FOR THERECOGNITION OF ONE ExamPLE, DIVIDED BY 7 x 4096
Kernel linear Gaussian Laplacian Sublinear
opP flt sqrt exp || fl1t sqrt exp | flt sqrt exp | flt sqrt exp
a=1 1 0.00 0 543 0.00 0.13| 897 0.00 0.22 | 802 802.00 0.20
a=0.5 1 0.14 0 677 0.14 0.17 675 014 0.16 | 774 774.14 0.19
a=0.25 1 0.29 0 491 029 0.12 | 719 0.29 0.18 | 764 764.29 0.19
a=0.125 1 0.43 0 651 043 0.16 | 637 0.43 0.16 | 7565 755.43 0.18
< As anticipated, decreasinghas roughly the same impact TABLE VII

as decreasing. (compare columr = 2 to line @ = 1,  CLASS-CONFUSION MATRIX FOR a = 0.25 AND b = 1.0. FOR ExaumPLE, Row
' (1) INDICATES THAT ON THE 386 IMAGES OF THE AIRPLANESCATEGORY, 341

on both Tables IV and V)' ) HAvE BEEN CORRECTLY CLASSIFIED, 22 Have BEEN CLASSIFIED IN
e For both, Corel14 and Corel7, the best performance is BIRDS, SEVEN IN BOATS FOUR IN BUILDINGS, AND 12 IN VEHICLES
1 1 —_ —_ =
achieved witht = 1 anda = 0.25. Airpl. Birds Boats Build, Fish People Vehic.
 For histogram classification, Gaussian RBF kernels afirplanes | 341 29 7 1 0 0 12
hardly better than linear SVM's and require around NSYBirds 30 402 7 27 17 11 7
(number of support vectors) times more computations [afoats 8 8 163 11 3 4 3
ton i Buildings | 6 29 10 535 11 19 15
recognition time. _ Fish 2 16 3 10 253 13 3
» Sublinear RBF kernels are no better than Laplacian RBeople 3 13 0 29 15 296 2
kernels (provided that < 2) and are too computationally | Vehicles 12 12 3 22 5 2 244
intensive: a time-consuming square root is required for
nonzero components of every support vector. This extremely good performance is due to the superior

+ For the practical use of RBF kernels, memory requirgeneralization ability of SVM’s in high-dimensional spaces
ments may also be an issue. A full floating point repo the use of heavy-tailed RBF’s as kernels and to nonlin-
resentation of 5000 support vectors, each with 409€r transformations applied to the histogram bin values. We
components, requires 80 Megabytes of memory. studied how the choice of thé, distance used in a RBF

* Reducinga to 0.25 makes linear SVM's a very attractivekernel affects performance on histogram classification, and
solution for many applications: its error rate is only 30%ound Laplacian RBF kernels to be superior to the standard
higher than the best RBF-based SVM, while its comp@aussian RBF kernels. As a nonlinear transformation of the
tational and memory requirements are several orders i values, we used-exponentiation withz ranging from 1
magnitude smaller than for the most efficient RBF-basefbwn to 0. In the case of RBF kernels, the loweringzadnd
SVM. p have similar effects, and their combined influence yields the

* Experiments witha = 0 yield surprisingly good results, pest performance.
and show that what is important about a histogram bin The lowering of ¢ improves the performance of linear
is not its value, but whether it contains any pixel at allsyM's to such an extent that it makes them a valid alternative
Note that in this case, Gaussian, Laplacian, and sublingg'RBF kernels, giving comparable performance for a fraction
RBF's are exactly equivalent. of the computational and memory requirements. This suggests

* The input space has 4096 dimensions: this is high enoughew strategy for the use of SVM’'s when the dimension
to enforce full separability in the linear case. Howevepf the input space is extremely high. Rather than introducing
when optimizing forx with the validation set, a solution kernels intended at making this dimension even higher, which
with training misclassifications was preferred (around 1%ay not be useful, it is recommended to first try nonlinear
error on the case dforell4and 5% error in the case ofransformations of the input components in combination with

Corel?). linear SVM'’s. The computations may be orders of magnitude
Table VII presents the class-confusion matrix correspondifigster and the performances comparable.
to the use of the Laplacian kernel @orel7 with ¢ = 0.25 This work can be extended in several ways. Higher-level

andb = 1.0 (these values yield the best results for bGtirel7  spatial features can be added to the histogram features. Al-
andCorell4. The most common confusions happen betweédwing for the detection of multiple objects in a single image
birds and airplanes which is consistent. would make this classification-based technique usable for
image retrieval: an image would be described by the list of
objects it contains. Histograms are used to characterize other
VI. SUMMARY types of data than images, and can be used, for instance,
In this paper, we have shown that it is possible to pudghr fraud detection applications. It would be interesting to
the classification performance obtained on image histograingestigate if the same type of kernel brings the same gains
to surprisingly high levels with error rates as low as 11% performance.
for the classification of 14 Corel categories and 16% for a
more generic set of objects. This is achieved without any other REFERENCES
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