
Lecture 10

OPERATION, MAINTENANCE AND EVOLUTION

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2015

1© Barbora Bühnová



Topics covered

 Evolution processes

 Change processes for software systems 

 Lehman’s laws

 Understanding software evolution dynamics

 Software maintenance

 Making changes to operational software systems

 Legacy system management

 Making decisions about software change

2Chapter 9 Software evolution



Evolution Processes

Lecture 10/Part 1

3Chapter 9 Software evolution



Software change

 Software change is inevitable

 New requirements emerge when the software is used;

 The business environment changes;

 Errors must be repaired;

 New computers and equipment is added to the system;

 The performance or reliability of the system may have to be 

improved.

 For custom systems, the costs of software maintenance 

usually exceed the software development costs.

 A key problem for all organizations is implementing and 

managing change to their existing software systems.

4Chapter 9 Software evolution



A spiral model of development & evolution

5Chapter 9 Software evolution



Evolution and servicing

6Chapter 9 Software evolution

 Evolution

 New functionality added, faults repaired.

 Servicing

 Faults repaired, no new functionality added.

 Phase-out

 The software still in use but no further changes are made to it.



Evolution processes

 Proposals for change are the driver for SW evolution.

 Should be linked with components that are affected by the 

change, thus allowing the cost and impact of the change to be 

estimated.

 Change identification and evolution continues throughout 

the system lifetime.

7Chapter 9 Software evolution



More on change implementation

 Iteration of the development process where the 

revisions to the system are designed, implemented and 

tested.

 May be done by a different team, not the original developers.

 Involves program understanding, especially if no original 

developers are involved.

 During the program understanding phase, one has to understand 

how the proposed change might affect the program. 

 Urgent changes may have to be implemented without 

going through all stages of the evolution process.

 Technical debt may be created and must be managed.

8Chapter 9 Software evolution



Agile methods and evolution

 Agile methods are based on incremental development so 

the transition from development to evolution is seamless.

 Evolution is simply a continuation of the development process 

based on frequent system releases.

 Automated regression testing is particularly valuable 

when changes are made to a system.

 Handover problems

 What if the development team is agile and the evolution team is 

not?

 What if the evolution team is agile and the development team is 

not?

9Chapter 9 Software evolution



Lehman’s laws

Lecture 10/Part 2

10Chapter 9 Software evolution



Lehman’s laws

Law Description

Continuing change A program that is used in a real-world environment must 

necessarily change, or else become progressively less useful in 

that environment.

Increasing 

complexity

As an evolving program changes, its structure tends to become more 

complex. Extra resources must be devoted to preserving and 

simplifying the structure.

Self regulation Program evolution is a self-regulating process. System attributes 

such as size, time between releases, and the number of reported 

errors is approximately invariant for each system release.

11Chapter 9 Software evolution

 Program evolution dynamics is the study of the processes of 
system change.

 After several major empirical studies Lehman and Belady proposed 
observational ‘laws’ which applied to systems under evolution.



Lehman’s laws

Law Description

Organizational stability Over a program’s lifetime, its rate of development is 

approximately constant and independent of the resources 

devoted to system development.

Conservation of familiarity Over the lifetime of a system, the incremental change in each 

release shall be approximately constant, to allow system 

users to maintain mastery of its usage.

Continuing growth The functionality offered by systems has to continually 

increase to maintain user satisfaction.

Declining quality The quality of systems will decline unless they are modified to 

reflect changes in their operational environment.

Feedback system Evolution processes incorporate multiagent, multiloop

feedback systems and you have to treat them as feedback 

systems to achieve significant product improvement.

12Chapter 9 Software evolution



Applicability of Lehman’s laws

 Lehman’s laws seem to be generally applicable to large, 

tailored systems developed by large organisations.

 Confirmed in early 2000’s by work by Lehman on the FEAST 

project.

 It is not clear how they should be modified for

 Generic software products;

 Systems that incorporate a significant number of COTS 

components;

 Small organisations;

 Small and medium sized systems.

13Chapter 9 Software evolution



Software Maintenance

Lecture 10/Part 3

14Chapter 9 Software evolution



 Modifying a program after it has been put into use.

 The term is mostly used for changing custom software. 

Generic software products are said to evolve to create 

new versions.

 Maintenance does not normally involve major 

changes to the system’s architecture.

 Changes are implemented by modifying existing 

components and adding new components to the system.

Software maintenance

15Chapter 9 Software evolution



 Corrective: Maintenance to repair software faults

 Changing a system to correct deficiencies in the way meets its 

requirements.

 Adaptive: Maintenance to adapt software to a different 

operating environment

 Changing a system so that it operates in a different environment 

(computer, OS, etc.) from its initial implementation.

 Evolutionary: Maintenance to add to or modify the 

system’s functionality

 Modifying the system to satisfy new requirements.

Types of maintenance

16Chapter 9 Software evolution



Maintenance effort distribution

17Chapter 9 Software evolution



 Usually greater than development costs (1* to 20* 

depending on the application).

 Experience with custom information systems shows that around 

20% of development costs needs to be allocated to maintenance 

every year (within the first five years).

 Affected by both technical and non-technical factors.

 Increases as software is maintained. Maintenance 

corrupts the software structure so makes further 

maintenance more difficult.

 Ageing software can have high support costs 

(e.g. old languages, compilers etc.).

Maintenance costs

18Chapter 9 Software evolution



Development and maintenance costs

19Chapter 9 Software evolution



 Team stability

 Maintenance costs are reduced if the same staff are involved 
with them for some time.

 Contractual responsibility

 The developers of a system may have no contractual 
responsibility for maintenance so there is no incentive to design 
for future change.

 Staff skills

 Maintenance staff are often inexperienced and have limited 
domain knowledge.

 Program age and structure

 As programs age, their structure is degraded and they become 
harder to understand and change.

Maintenance cost factors

20Chapter 9 Software evolution



Maintenance prediction

 Maintenance prediction is concerned with assessing 

which parts of the system may cause problems and have 

high maintenance costs

 Change acceptance depends on the maintainability of the 

components affected by the change;

 Implementing changes degrade the system and reduces its 

maintainability;

 Maintenance costs depend on the number of changes and costs 

of change depend on maintainability.

21Chapter 9 Software evolution



Maintenance prediction

22Chapter 9 Software evolution



Change prediction

 Predicting the number of changes requires an 

understanding of the relationships between the 

system and its environment.

 Tightly coupled systems require changes whenever the 

environment is changed.

 Factors influencing this relationship are

 Number and complexity of system interfaces;

 Number of inherently volatile system requirements;

 The business processes where the system is used.

23Chapter 9 Software evolution



Complexity metrics

 Predictions of maintainability can be made by assessing 

the complexity of system components.

 Studies have shown that most maintenance effort is 

spent on a relatively small number of system 

components.

 Complexity depends on

 Complexity of control structures;

 Complexity of data structures;

 Object, method (procedure) and module size.

24Chapter 9 Software evolution



Process metrics

 Process metrics may be used to assess maintainability

 Number of requests for corrective maintenance;

 Average time required for impact analysis;

 Average time taken to implement a change request;

 Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a 

decline in maintainability.

25Chapter 9 Software evolution



System reengineering

 Re-structuring or re-writing part or all of a legacy system 

without changing its functionality.

 Applicable where some but not all sub-systems of a 

larger system require frequent maintenance.

 Reengineering involves adding effort to make them 

easier to maintain. The system may be re-structured 

and re-documented.

 How does reengineering relate to refactoring?

 How does reengineering relate to technical debt?

26Chapter 9 Software evolution



Advantages of reengineering

 Reduced risk

 There is a high risk in new software development. There may be 

development problems, staffing problems and specification 

problems.

 Reduced cost

 The cost of reengineering is often significantly less than the 

costs of developing new software.

27Chapter 9 Software evolution



Reengineering activities

 Source code translation

 Convert code to a new language.

 Reverse engineering

 Analyse the program to understand it;

 Program structure improvement

 Restructure automatically for understandability;

 Program modularisation

 Reorganise the program structure;

 Data reengineering

 Clean-up and restructure system data.

28Chapter 9 Software evolution



The reengineering process example

29Chapter 9 Software evolution



Reengineering cost factors

 The quality of the software to be reengineered.

 The tool support available for reengineering.

 The extent of the data conversion which is required.

 The availability of expert staff for reengineering.

30Chapter 9 Software evolution



Preventative maintenance by refactoring

 Refactoring is the process of making improvements to a 

program to slow down degradation through change.

 You can think of refactoring as ‘preventative 

maintenance’ that reduces the problems of future 

change. 

 Refactoring involves modifying a program to improve its 

structure, reduce its complexity or make it easier to 

understand. 

 When you refactor a program, you should not add 

functionality but rather concentrate on program 

improvement. 

31Chapter 9 Software evolution



Refactoring and reengineering

 Reengineering takes place after a system has been 

maintained for some time and maintenance costs are 

increasing. You use automated tools to process and 

reengineer a legacy system to create a new system that 

is more maintainable. 

 Refactoring is a continuous process of improvement 

throughout the development and evolution process. It is 

intended to avoid the structure and code degradation 

that increases the costs and difficulties of maintaining a 

system.

32Chapter 9 Software evolution



Examples of ‘Bad Smells’ in program code

 Duplicate code 

 Can be implemented as a single method or function that is called 

as required.

 Long methods

 Can be redesigned as a number of shorter methods.

 Switch (case) statements 

 Whenever the switch depends on the type of a value, consider 

using polymorphism to achieve the same thing.

 Data clumping 

 Data clumps (repeating groups of data items) can often be 

encapsulated into an object.

33Chapter 9 Software evolution



Key points

 There are 3 types of software maintenance, namely bug 

fixing, modifying software to work in a new 

environment, and implementing new or changed 

requirements.

 Software reengineering is concerned with re-

structuring and re-documenting software to make it 

easier to understand and change. 

 Refactoring, making program changes that preserve 

functionality, is a form of preventative maintenance.

34Chapter 9 Software evolution



Legacy System Management

Lecture 10/Part 4

35Chapter 9 Software evolution



Legacy system management

 Organisations that rely on legacy systems must choose 

a strategy for evolving these systems

 Scrap: Scrap the system completely and modify business 

processes so that it is no longer required;

 Maintain: Continue maintaining the system;

 Reengineer: Transform the system by reengineering to improve 

its maintainability;

 Replace: Replace the system with a new system.

 The strategy chosen should depend on the system 

quality and its business value.

36Chapter 9 Software evolution



An example of a legacy system assessment

37Chapter 9 Software evolution



Legacy system categories

 Low quality, low business value

 These systems should be scrapped. 

 Low quality, high business value

 These make an important business 

contribution but are expensive to 

maintain. Should be reengineered 

or replaced if a suitable system is available.

 High quality, low business value

 Scrap or increase the business value – see on later slides.

 High quality, high business value

 Continue in operation using normal system maintenance.

38Chapter 9 Software evolution



Business value assessment

 Assessment should take different viewpoints into 

account

 System end-users;

 Business customers;

 Line managers;

 IT managers;

 Senior managers.

 Interview different stakeholders and collate results.

39Chapter 9 Software evolution



Issues in business value assessment

 The use of the system 

 If systems are only used occasionally or by a small number of 

people, they may have a low business value. 

 The business processes that are supported 

 A system may have a low business value if it forces the use of 

inefficient business processes. 

 System dependability 

 If a system is not dependable and the problems directly affect 

business customers, the system has a low business value.

 The system outputs 

 If the business depends on system outputs, then the system has 

a high business value. 

40Chapter 9 Software evolution



System quality assessment

 Application assessment

 What is the quality of the application software system? 

How expensive it is to maintain?

 Environment assessment

 How effective is the system’s environment?

How expensive it is to maintain?

 You may collect quantitative data to make an 

assessment of the quality of the application system

 The number of system change requests; 

 The number of different user interfaces used by the system;

 The volume of data used by the system.

41Chapter 9 Software evolution



Factor Questions

Understandability How difficult is it to understand the source code of the current 

system? How complex are the control structures that are used? 

Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation 

complete, consistent, and current?

Data Is there an explicit data model for the system? To what extent is 

data duplicated across files? Is the data used by the system up to 

date and consistent?

Performance Is the performance of the application adequate? Do performance 

problems have a significant effect on system users?

42Chapter 9 Software evolution

Factors used in application assessment



Factors used in application assessment

Factor Questions

Programming language Are modern compilers available for the programming 

language used to develop the system? Is the programming 

language still used for new system development?

Configuration 

management

Are all versions of all parts of the system managed by a 

configuration management system? Is there an explicit 

description of the versions of components that are used in 

the current system?

Test data Does test data for the system exist? Is there a record of 

regression tests carried out when new features have been 

added to the system? 

Personnel skills Are there people available who have the skills to maintain the 

application? Are there people available who have experience 

with the system?

43Chapter 9 Software evolution



Factors used in environment assessment

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and 

likely to continue in existence? Is the supplier replaceable? 

Failure rate Does the hardware have a high rate of reported failures? Does the 

support software crash and force system restarts? 

Age How old is the hardware and software? The older the hardware and 

support software, the more obsolete it will be.

Performance Is the performance of the system adequate? Do performance 

problems have a significant effect on system users?

Support 

requirements

What local support is required by the hardware and software? If high, 

it may be worth considering system replacement.

Maintenance 

costs

What are the costs of hardware maintenance and support software 

licenses (annual licensing costs)?

Interoperability Are there problems interfacing the system to other systems? Can 

compilers, for example, be used with current versions of the operating 

system? Is hardware emulation required?

44Chapter 9 Software evolution



Key points

 The business value of a legacy system and the quality of 

the application should be assessed to help decide if a 

system should be replaced, transformed or maintained.

 The business-value assessment should take different 

stakeholder viewpoints into account.

45Chapter 9 Software evolution


