
Lecture 12

PROCESSES AND ADVANCED TECHNIQUES

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2015

1© Barbora Bühnová

Topics covered

 Summary of covered topics

 Software process models

 Outline of advanced techniques

 Tool support

 Course follow-up

2© Bühnová

Summary of Covered Topics

Lecture 12/Part 1

3© Bühnová

Covered topics

1. Software development, UML Use Case diagram.

2. Requirements specification, UML Activity diagram.

3. System analysis and design, structured vs. object-oriented A&D.

4. Object oriented analysis, UML Class, Object and State diagram.

5. Structured analysis, data modelling, ERD.

6. High-level design, UML Class diagram in design.

7. Low-level design and implementation, UML Interaction diagrams

8. Architecture design, UML Package, Component and Deployment

diagram.

9. Testing, verification and validation.

10.Operation, maintenance and system evolution.

11.Software development management.
© Bühnová 4

Software Process Models

Lecture 12/Part 2

5Chapter 22 Project management

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile.

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from many different

models.
Chapter 2 Software Processes 6

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced

at each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

7Chapter 3 Agile software development

The waterfall model

Chapter 2 Software Processes 8

Waterfall model benefits and problems

 The waterfall model is mostly used for large system

engineering projects where a system is developed at

several sites.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

 Suitable for new versions of generic products.

 Well understood context, stable requirements.

 The process makes it difficult to respond to changing

customer requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes can be limited.

Chapter 2 Software Processes 9

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with

requirements elicitation, consistency checking and validation;

 In design processes to explore design options and develop a

UI design;

 Prototypes often have poor internal structure and thus

should not become the foundation of the final system.

10Chapter 2 Software Processes

Boehm’s spiral model

 Process is represented as a spiral rather than as a

sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the

process.

 No fixed phases such as specification or design - loops

in the spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout

the process.

11Chapter 2 Software Processes

Boehm’s spiral model of the software

process

12Chapter 2 Software Processes

Spiral model sectors

 Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

 A development model for the system is chosen which can be

any of the generic models.

 Planning

 The project is reviewed and the next phase of the spiral is

planned.

13Chapter 2 Software Processes

The Rational Unified Process

 A modern generic process commonly associated with the

Unified Modeling Language (UML).

 Brings together aspects of a number of generic process

models discussed in this lecture. Which ones?

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practice perspective that suggests good practices to be used

during the process.

14Chapter 2 Software Processes

Phases in the Rational Unified Process

15Chapter 2 Software Processes

 Inception

 Establish the business case for the system.

 Elaboration

 Develop understanding of the problem domain and system architecture.

 Construction

 System design, programming and testing.

 Transition

 Deploy the system in its operating environment.

RUP process architecture

16Chapter 2 Software Processes

Iterative and incremental development

Chapter 2 Software Processes 17

What is the difference between the two?

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest

priority requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

18Chapter 2 Software Processes

Incremental development benefits

 Customer value can be delivered with each increment

so system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most attention (design, testing, etc.).

Chapter 2 Software Processes 19

Incremental development problems

 The complete specification is hard to foresee.

 This becomes problematic when complete specification is

required in contract negotiation.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on extensive refactoring,

regular changes tend to corrupt system structure and increase

the cost of incorporating further changes.

 It is hard to identify and effectively design basic facilities

shared by different parts of the system.

 The process is not visible, progress is hard to trace.

Chapter 2 Software Processes 20

Agile methods

 Agile methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and

to be able to respond quickly to changing

requirements without excessive rework.

21Chapter 3 Agile software development

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in

the development process. Wherever possible, actively work to

eliminate complexity from the system.

22Chapter 3 Agile software development

Problems with agile methods

 It can be difficult to keep the interest of customers who

are involved in the process.

 Because of their focus on small, tightly-integrated teams,

one needs to be careful when scaling agile methods to

large systems.

 Prioritizing changes can be difficult where there are

multiple stakeholders.

Maintaining simplicity requires extra work.

 Contracts may be a problem as with other approaches

to iterative development.

23Chapter 3 Agile software development

Extreme programming

 Perhaps the best-known and most widely used agile
method.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

24Chapter 3 Agile software development

XP and agile principles

 Incremental development is supported through small,

regular, frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming,

collective ownership and a process that avoids long

working hours.

Maintaining simplicity through constant refactoring of

code.

25Chapter 3 Agile software development

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

 Component analysis;

 Requirements modification;

 System design with reuse;

 Development and integration.

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 26

Key points

 General process models describe the organization of

software processes.

 Examples of general models include the ‘waterfall’ model,

incremental development, and reuse-oriented development.

 Processes should include activities to cope with change.

 This may involve prototyping and incremental delivery, which

help to avoid poor early decisions on requirements and design.

 Agile methods are incremental development methods

that focus on frequent releases, reducing process

overheads and emphasize customer involvement.

Chapter 1 Introduction 27

Outline of Advanced Techniques

Lecture 12/Part 3

28© Bühnová

Software reuse

 In most engineering disciplines, systems are designed

by composing existing components that have been used

in other systems.

 Software engineering has been more focused on original

development but it is now recognised that to achieve

better software, more quickly and at lower cost, we need

a design process that is based on systematic software

reuse.

 There has been a major switch to reuse-based

development and Component-Based Development

over the past 10 years.

© Bühnová

Distributed systems

 Virtually all large computer-based systems are now

distributed systems.

“… a collection of independent computers that appears to the user

as a single coherent system.”

 Distributed systems issues

 Distributed systems are more complex than systems that run on

a single processor.

 Complexity arises because different parts of the system are

independently managed as is the network.

 There is no single authority in charge of the system so top-

down control is impossible.

© Bühnová

Service-oriented architectures

 A means of developing distributed systems where the

components are stand-alone services

 Services may execute on different computers from

different service providers

 Standard protocols have been developed to support

service communication and information exchange

 Benefits of SOA:

 Services can be provided locally or outsourced to ext. providers

 Services are language-independent

 Investment in legacy systems can be preserved

 Inter-organisational computing is facilitated through simplified

information exchange
31© Bühnová

Mobile applications

 A mobile applications include apps designed to run on

smartphones, tablet computers and other mobile devices.

 They are usually available through application distribution

platforms, operated by the owner of the mobile operating

system, such as the Apple App Store, Google Play, and

Windows Phone Store.

Mobile apps were originally offered for general productivity

and information retrieval, including email, calendar,

contacts and weather information.

 However, public demand drove rapid expansion into many

other categories, including banking, order-tracking, or

medical apps.
32© Bühnová

Embedded systems

 Computers are used to control a wide range of systems

from simple domestic machines, through games

controllers, to entire manufacturing plants.

 Their software must react to events generated by the

hardware and, often, issue control signals in response to

these events.

 The software in these systems is embedded in system

hardware, often in read-only memory, and usually

responds, in real time, to events from the system’s

environment.

 Issues of safety and reliability may dominate the

system design.
© Bühnová

Cloud computing

 Cloud computing is computing in which large groups of

remote servers are networked to allow centralized data

storage and online access to computer services or

resources.

 Service models

 Infrastructure as a service (IaaS)

 Platform as a service (PaaS)

 Software as a service (SaaS)

Moreover, big data and its

processing is a topic on its own

34© Bühnová

Tool Support

Lecture 12/Part 4

35Chapter 22 Project management

SE tasks commonly supported by tools

 Plan and schedule software development project

 Specify, manage and trace requirements

 Model and analyze business processes

 Create design and deployment models

 Create, edit, compile and debug code in different languages

 Generate and import database schema

 Track changes

 Manage tests

 Document software development

 Communicate and develop team based projects

36Chapter 7 Design and implementation

Most popular tools

 Requirements analysis and design modeling tools

 Programming environments that automate parts of

program construction processes (e.g., automated builds)

 Software configuration management and version control

 Testing tools including static and dynamic analysis tools

 Continuous integration and release management

 Issue tracking

 Project management tools

 Tool integration concepts and mechanisms

Chapter 4 Requirements engineering 37

Integrated development environments

(IDEs)

 Software development tools are often grouped to

create an integrated development environment (IDE).

 An IDE is a set of software tools that supports different

aspects of software development, within some common

framework and user interface.

 IDEs are created to support development in a specific

programming language such as Java. The language

IDE may be developed specially, or may be an

instantiation of a general-purpose IDE, with specific

language-support tools.

38Chapter 7 Design and implementation

Key points

 Software engineering process can be supported by a

large variety of tools.

 The specific tools are often integrated into a single

environment or framework, which assists the developers

through integrated support on one place.

Chapter 7 Design and implementation 39

Course Follow-up

Lecture 12/Part 5

40© Bühnová

Course finalization

 Seminar projects

 Assessment

 “Seminar completion / Absolvování cvičení“ notebook in IS

 Exam

 Number of exam dates

 Reservation/cancelation policies

 Legth of the exam

 Form of the exam – test part and UML modelling part

 Results and their viewing

 Opinion poll

 Do not forget to give us your feedback! 

41© Bühnová

Follow-up and related courses

 PA017 Softwarové inženýrství II

 PA103 Objektové metody návrhu informačních systémů

 PV167 Projekt z objektového návrhu inf. Systémů

 PV260 Software Quality

 PA104 Vedení týmového projektu

 PV207 Business Process Management

 PV165 Procesní řízení

 PV045 Management informačního systému

 PA189 Agile Management in IT

 PV028 Aplikační informační systémy

42© Bühnová

Follow-up and related courses

 PV043 Informační systémy podniků

 PV230 Podnikové portály

 PV019 Geografické informační systémy I, II

 PV058 Informační systémy ve veřejné a státní správě

 PV213 Enterprise Information Systems in Practice

 PV098 Řízení implementace IS

 PB168 Základy databázových a informačních systémů

 PB114 Datové modelování I

 SSME Courses

43© Bühnová

Thanks

Thank you for your attention

and good luck with the exam!

44© Bühnová

