PARI-GP Reference Card (PARI-GP version 2.6.1) Note: optional arguments are surrounded by braces {}. To start the calculator, type its name in the terminal: gp To exit gp, type quit, \q, or at prompt. Help describe function ?function extended description ??keyword list of relevant help topics ???pattern Input/Output previous result, the result before %, %‘, %‘‘, etc. n-th result since startup %n separate multiple statements on line ; extend statement on additional lines \ extend statements on several lines {seq1; seq2;} comment /* . . . */ one-line comment, rest of line ignored \\ . . . Metacommands & Defaults set default d to val default({d}, {val}, {flag}) toggle timer on/off # print time for last result ## print defaults \d set debug level to n \g n set memory debug level to n \gm n set output mode (raw=0, default=1) \o n set n significant digits \p n set n terms in series \ps n quit GP \q print the list of PARI types \t print the list of user-defined functions \u read file into GP \r filename Debugger / break loop get out of break loop break or go up n frames dbg up({n}) examine object o dbg x(o) PARI Types & Input Formats t INT/t REAL. Integers, Reals ±n, ±n.ddd t INTMOD. Integers modulo m Mod(n, m) t FRAC. Rational Numbers n/m t FFELT. Elt in finite field Fq ffgen(q) t COMPLEX. Complex Numbers x + y ∗ I t PADIC. p-adic Numbers x + O(p^k) t QUAD. Quadratic Numbers x + y ∗ quadgen(D) t POLMOD. Polynomials modulo g Mod(f, g) t POL. Polynomials a ∗ x^n + · · · + b t SER. Power Series f + O(x^k) t QFI/t QFR. Imag/Real bin. quad. forms Qfb(a, b, c, {d}) t RFRAC. Rational Functions f/g t VEC/t COL. Row/Column Vectors [x, y, z], [x, y, z]~ t MAT. Matrices [x, y;z, t;u, v] t LIST. Lists List([x, y, z]) t STR. Strings "abc" Reserved Variable Names π = 3.14 . . ., γ = 0.57 . . ., C = 0.91 . . . Pi, Euler, Catalan square root of −1 I big-oh notation O c 2013 Karim Belabas. Permissions on back. v2.27 Information about an Object PARI type of object x type(x) length of x / size of x in memory #x, sizebyte(x) real or p-adic precision of x precision(x), padicprec Operators basic operations +, - , *, /, ^ i=i+1, i=i-1, i=i*j, . . . i++, i--, i*=j,. . . euclidean quotient, remainder x\/y, x\y, x%y, divrem(x, y) shift x left or right n bits x<>n or shift(x, ±n) comparison operators <=, <, >=, >, ==, !=, ===, lex, cmp boolean operators (or, and, not) ||, &&, ! bit operations bitand, bitneg, bitor, bitxor sign of x = −1, 0, 1 sign(x) maximum/minimum of x and y max, min(x, y) integer or real factorial of x x! or factorial(x) derivative of f w.r.t. x f’ apply differential operator diffop restore x as a formal variable x=’x simultaneous assignment x ← v1, y ← v2 [x,y] = v Select Components n-th component of x component(x, n) n-th component of vector/list x x[n] components a, a + 1, . . . , b of vector x x[a..b] (m, n)-th component of matrix x x[m, n] row m or column n of matrix x x[m,], x[, n] numerator/denominator of x numerator(x), denominator Conversions to vector, matrix, set, list, string Col/Vec,Mat,Set,List,Str create PARI object (x mod y) Mod(x, y) make x a polynomial of v Pol(x, {v}) as Pol/Vec, starting with constant term Polrev, Vecrev make x a power series of v Ser(x, {v}) string from bytes / from format+args Strchr, Strprintf convert x to simplest possible type simplify(x) object x with precision n precision(x, n) Conjugates and Lifts conjugate of a number x conj(x) conjugate vector of algebraic number x conjvec(x) norm of x, product with conjugate norm(x) square of L2 norm of vector x norml2(x) lift of x from Mods lift, centerlift(x) Lists, Sets & Sorting sort x by k-th component vecsort(x, {k}, {fl = 0}) min. m of x (m = x[i]), max. vecmin(x, {&i}), vecmax does y belong to x, sorted wrt. f vecsearch(x, y, {f}) Sets (= row vector of strings with strictly increasing entries) intersection of sets x and y setintersect(x, y) set of elements in x not belonging to y setminus(x, y) union of sets x and y setunion(x, y) does y belong to the set x setsearch(x, y, {flag}) is x a set ? setisset(x) Lists. create empty list: L = List() append x to list L listput(L, x, {i}) remove i-th component from list L listpop(L, {i}) insert x in list L at position i listinsert(L, x, i) sort the list L in place listsort(L, {flag}) Programming Functions and closures fun(vars) = my(local vars); seq fun = (vars) -> my(local vars); seq Control Statements (X: formal parameter in expression seq) eval. seq for a ≤ X ≤ b for(X = a, b, seq) eval. seq for X dividing n fordiv(n, X, seq) eval. seq for primes a ≤ X ≤ b forprime(X = a, b, seq) eval. seq for a ≤ X ≤ b stepping s forstep(X = a, b, s, seq) multivariable for forvec(X = v, seq) loop over partitions of n forpart(p =n seq) loop over vectors v, q(v) ≤ B, q > 0 forqfvec(v, q, b, seq) loop over subgrps H of abelian grp G forsubgroup(H = G) evaluate seq until a = 0 until(a, seq) while a = 0, evaluate seq while(a, seq) exit n innermost enclosing loops break({n}) start new iteration of n-th enclosing loop next({n}) return x from current subroutine return({x}) raise an exception error() if a = 0, evaluate seq1, else seq2 if(a, {seq1}, {seq2}) try seq1, evaluate seq2 on error iferr(seq1, E, seq2) select from v according to f select(f, v) apply f to all entries in v apply(f, v) Input/Output print with/without \n, TEX format print, print1, printtex formatted printing printf() write args to file write, write1, writetex(file, args) write x in binary format writebin(file, x) read file into GP read({file}) read file, return as vector of lines readvec({file}) read a string from keyboard input() Interface with User and System allocates a new stack of s bytes allocatemem({s}) alias old to new alias(new, old) install function from library install(f, code, {gpf }, {lib}) execute system command a system(a) as above, feed result to GP extern(a) as above, return GP string externstr(a) get $VAR from environment getenv("VAR") measure time in ms. gettime() timeout command after s seconds alarm(s, expr) Iterations, Sums & Products numerical integration intnum(X = a, b, expr, {flag}) sum expr over divisors of n sumdiv(n, X, expr) sumdiv, with expr multiplicative sumdivmult(n, X, expr) sum X = a to X = b, initialized at x sum(X = a, b, expr, {x}) sum of series expr suminf(X = a, expr) sum of alternating/positive series sumalt, sumpos sum of series using intnum sumnum product a ≤ X ≤ b, initialized at x prod(X = a, b, expr, {x}) product over primes a ≤ X ≤ b prodeuler(X = a, b, expr) infinite product a ≤ X ≤ ∞ prodinf(X = a, expr) real root of expr between a and b solve(X = a, b, expr) Random Numbers random integer/prime in [0, N[ random(N), randomprime get/set random seed getrand, setrand(s) Vectors & Matrices dimensions of matrix x matsize(x) concatenation of x and y concat(x, {y}) extract components of x vecextract(x, y, {z}) transpose of vector or matrix x mattranspose(x) or x~ adjoint of the matrix x matadjoint(x) eigenvectors/values of matrix x mateigen(x) characteristic/minimal polynomial of x charpoly(x), minpoly trace/determinant of matrix x trace(x), matdet Frobenius form of x matfrobenius(x) QR decomposition matqr(x) Constructors & Special Matrices row vec. of expr eval’ed at 1 ≤ i ≤ n vector(n, {i}, {expr}) col. vec. of expr eval’ed at 1 ≤ i ≤ n vectorv(n, {i}, {expr}) matrix 1 ≤ i ≤ m, 1 ≤ j ≤ n matrix(m, n, {i}, {j}, {expr}) define matrix by blocks matconcat(B) diagonal matrix with diagonal x matdiagonal(x) n × n identity matrix matid(n) Hessenberg form of square matrix x mathess(x) n × n Hilbert matrix Hij = (i + j − 1)−1 mathilbert(n) companion matrix to polynomial x matcompanion(x) Sylvester matrix of x polsylvestermatrix(x) Gaussian elimination kernel of matrix x matker(x, {flag}) intersection of column spaces of x and y matintersect(x, y) solve M ∗ X = B (M invertible) matsolve(M, B) as solve, modulo D (col. vector) matsolvemod(M, D, B) one sol of M ∗ X = B matinverseimage(M, B) basis for image of matrix x matimage(x) supplement columns of x to get basis matsupplement(x) rows, cols to extract invertible matrix matindexrank(x) rank of the matrix x matrank(x) Lattices & Quadratic Forms upper triangular Hermite Normal Form mathnf(x) HNF of x where d is a multiple of det(x) mathnfmod(x, d) elementary divisors of x matsnf(x) LLL-algorithm applied to columns of x qflll(x, {flag}) like qflll, x is Gram matrix of lattice qflllgram(x, {flag}) LLL-reduced basis for kernel of x matkerint(x) Z-lattice ←→ Q-vector space matrixqz(x, p) signature of quad form ty ∗ x ∗ y qfsign(x) decomp into squares of ty ∗ x ∗ y qfgaussred(x) eigenvals/eigenvecs for real symmetric x qfjacobi(x) find up to m sols of ty ∗ x ∗ y ≤ b qfminim(x, b, m) perfection rank of x qfperfection(x) v, v[i] :=number of sols of ty ∗ x ∗ y = i qfrep(x, B, {flag}) automorphism group of q qfauto(q) find isomorphism between q and Q qfisom(q, Q) Formal & p-adic Series truncate power series or p-adic number truncate(x) valuation of x at p valuation(x, p) Dirichlet and Power Series Taylor expansion around 0 of f w.r.t. x taylor(f, x) akbktk from aktk and bktk serconvol(a, b) f = aktk from (ak/k!)tk serlaplace(f) reverse power series F so F(f(x)) = x serreverse(f) Dirichlet series multiplication / division dirmul, dirdiv(x, y) Dirichlet Euler product (b terms) direuler(p = a, b, expr) PARI-GP Reference Card (PARI-GP version 2.6.1) Polynomials & Rational Functions degree of f poldegree(f) coeff. of degree n of f, leading coeff. polcoeff(f, n), pollead gcd of coefficients of f content(f) replace x by y subst(f, x, y) evaluate f replacing vars by their value eval(f) replace polynomial expr. T(x) by y in f substpol(f, T, y) replace x1, . . . , xn by y1, . . . , yn in f substvec(f, x, y) discriminant of polynomial f poldisc(f) resultant R = Resv(f, g) polresultant(f, g, {v}) [u, v, R], xu + yv = Resv(f, g) polresultantext(x, y, {v}) derivative of f w.r.t. x deriv(f, {x}) formal integral of f w.r.t. x intformal(f, {x}) formal sum of f w.r.t. x sumformal(f, {x}) reciprocal poly xdeg f f(1/x) polrecip(f) interpol. pol. eval. at a polinterpolate(X, {Y }, {a}, {&e}) initialize t for Thue equation solver thueinit(f) solve Thue equation f(x, y) = a thue(t, a, {sol}) Roots and Factorization number of real roots of f, a < x ≤ b polsturm(f, {a}, {b}) complex roots of f polroots(f) symmetric powers of roots of f up to n polsym(f, n) factor f factor(f, {lim}) factor f mod p / roots factormod(f, p), polrootsmod factor f over Fpa / roots factorff(f, p, a), polrootsff factor f over Qp / roots factorpadic(f, p, r), polrootspadic find irreducible T ∈ Fp[x], deg T = n ffinit(p, n, {x}) #{monic irred. T ∈ Fq[x], deg T = n} ffnbirred(q, n) p-adic root of f cong. to a mod p padicappr(f, a) Newton polygon of f for prime p newtonpoly(f, p) extensions of Qp of degree N padicfields(p, N) Special Polynomials n-th cyclotomic polynomial in var. v polcyclo(n, {v}) d-th degree subfield of Q(ζn) polsubcyclo(n, d, {v}) Pn, Tn/Un, Hn pollegendre, polchebyshev, polhermite Transcendental and p-adic Functions real, imaginary part of x real(x), imag(x) absolute value, argument of x abs(x), arg(x) square/nth root of x sqrt(x), sqrtn(x, n, {&z}) trig functions sin, cos, tan, cotan inverse trig functions asin, acos, atan hyperbolic functions sinh, cosh, tanh inverse hyperbolic functions asinh, acosh, atanh exponential / natural log of x exp, log Euler Γ function, log Γ, Γ /Γ gamma, lngamma, psi incomplete gamma function (y = Γ(s)) incgam(s, x, {y}) exponential integral ∞ x e−t/t dt eint1(x) error function 2/ √ π ∞ x e−t2 dt erfc(x) dilogarithm of x dilog(x) m-th polylogarithm of x polylog(m, x, {flag}) U-confluent hypergeometric function hyperu(a, b, u) Bessel Jn(x), Jn+1/2(x) besselj(n, x), besseljh(n, x) Bessel Iν, Kν, H1 ν , H2 ν , Nν (bessel)i, k, h1, h2, n Lambert W: x s.t. xex = y lambertw(y) Teichmuller character of p-adic x teichmuller(x) Elementary Arithmetic Functions vector of binary digits of |x| binary(x) bit number n of integer x bittest(x, n) Hamming weight of integer x hammingweight(x) ceiling/floor/fractional part ceil, floor, frac round x to nearest integer round(x, {&e}) truncate x truncate(x, {&e}) gcd/LCM of x and y gcd(x, y), lcm(x, y) gcd of entries of a vector/matrix content(x) Primes and Factorization add primes in v to prime table addprimes(v) Chebyshev π(x), n-th prime pn primepi(x), prime(n) vector of first n primes primes(n) smallest prime ≥ x nextprime(x) largest prime ≤ x precprime(x) factorization of x factor(x, {lim}) n = df2, d squarefree/fundamental core(n, {fl}), coredisc recover x from its factorization factorback(f, {e}) Divisors number of prime divisors ω(n) / Ω(n) omega(n), bigomega divisors of n / number of divisors τ(n) divisors(n), numdiv sum of (k-th powers of) divisors of n sigma(n, {k}) Special Functions and Numbers binomial coefficient x y binomial(x, y) Bernoulli number Bn as real/rational bernreal(n), bernfrac Bernoulli polynomial Bn(x) bernpol(n, {x}) n-th Fibonacci number fibonacci(n) Stirling numbers s(n, k) and S(n, k) stirling(n, k, {flag}) number of partitions of n numbpart(n) M¨obius µ-function moebius(x) Hilbert symbol of x and y (at p) hilbert(x, y, {p}) Kronecker-Legendre symbol ( x y ) kronecker(x, y) Dedekind sum s(h, k) sumdedekind(h, k) Multiplicative groups (Z/NZ)∗, F∗ q Euler φ-function eulerphi(x) multiplicative order of x (divides o) znorder(x, {o}), fforder primitive root mod q / x.mod znprimroot(q), ffprimroot(x) structure of (Z/nZ)∗ znstar(n) discrete logarithm of x in base g znlog(x, g, {o}), fflog Miscellaneous integer square / n-th root of x sqrtint(x), sqrtnint(x, n) solve z ≡ x and z ≡ y chinese(x, y) minimal u, v so xu + yv = gcd(x, y) gcdext(x, y) continued fraction of x contfrac(x, {b}, {lmax}) last convergent of continued fraction x contfracpnqn(x) rational approximation to x bestappr(x, k), bestapprPade True-False Tests is x the disc. of a quadratic field? isfundamental(x) is x a prime? isprime(x) is x a strong pseudo-prime? ispseudoprime(x) is x square-free? issquarefree(x) is x a square? issquare(x, {&n}) is x a perfect power? ispower(x, {k}, {&n}) is pol irreducible? polisirreducible(pol) Based on an earlier version by Joseph H. Silverman September 2013 v2.27. Copyright c 2013 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to Karim.Belabas@math.u-bordeaux.fr PARI-GP Reference Card (2) (PARI-GP version 2.6.1) Elliptic Curves Elliptic curve initially given by 5-tuple v =[a1, a2, a3, a4, a6]. Initialize ell struct E = ellinit(v, {Domain}) Points are [x,y], the origin is [0]. Struct members accessed as E.member: • All domains: E.a1,a2,a3,a4,a6, b2,b4,b6,b8, c4,c6, disc, j • E defined over R or C x-coords. of points of order 2 E.roots periods / quasi-periods E.omega,E.eta volume of complex lattice E.area • E defined over Qp residual characteristic E.p If |j|p > 1: Tate’s [u2, u, q, [a, b]] E.tate • E defined over Fq characteristic E.p #E(Fq)/cyclic structure/generators E.no, E.cyc, E.gen • E defined over Q generators of E(Q) (require elldata) E.gen [a1, a2, a3, a4, a6] from j-invariant ellfromj(j) change curve E using v =[u, r, s, t] ellchangecurve(E, v) change point z using v =[u, r, s, t] ellchangepoint(z, v) add points P + Q / P − Q elladd(E, P, Q), ellsub negate point ellneg(E, P) compute n · z ellmul(E, z, n) n-division polynomial fn(x) elldivpol(E, n, {x}) check if z is on E ellisoncurve(E, z) order of torsion point z ellorder(E, z) y-coordinates of point(s) for x ellordinate(E, x) point [℘(z), ℘ (z)] corresp. to z ellztopoint(E, z) complex z such that p = [℘(z), ℘ (z)] ellpointtoz(E, p) Curves over finite fields, Pairings random point on E random(E) #E(Fq) ellcard(E) structure Z/d1Z × Z/d2Z of E(Fq) ellgroup(E) Weil pairing of m-torsion pts x, y ellweilpairing(E, x, y, m) Tate pairing of x, y; x m-torsion elltatepairing(E, x, y, m) Discrete log, find n s.t. P = [n]Q elllog(E, P, Q, {ord}) Curves over Q and the L-function canonical bilinear form taken at z1, z2 ellbil(E, z1, z2) canonical height of z ellheight(E, z, {flag}) height regulator matrix for pts in x ellheightmatrix(E, x) cond, min mod, Tamagawa num [N, v, c] ellglobalred(E) reduction of y2 + Qy = P (genus 2) genus2red(Q, P, {p}) Kodaira type of p-fiber of E elllocalred(E, p) minimal model of E/Q ellminimalmodel(E, {&v}) p-th coeff ap of L-function, p prime ellap(E, p) k-th coeff ak of L-function ellak(E, k) vector of first n ak’s in L-function ellan(E, n) L(E, s) elllseries(E, s) L(r)(E, 1) ellL1(E, r) return a Heegner point on E of rank 1 ellheegner(E) order of vanishing at 1 ellanalyticrank(E, {eps}) root number for L(E, .) at p ellrootno(E, {p}) torsion subgroup with generators elltors(E) modular parametrization of E elltaniyama(E) c 2013 Karim Belabas. Permissions on back. v2.27 Elldata package, Cremona’s database: db code ↔ [conductor, class, index] ellconvertname(s) generators of Mordell-Weil group ellgenerators(E) look up E in database ellidentify(E) all curves matching criterion ellsearch(N) loop over curves with cond. from a to b forell(E, a, b, seq) Elliptic & Modular Functions w = [ω1, ω2] or ell struct (E.omega), τ = ω1/ω2. arithmetic-geometric mean agm(x, y) elliptic j-function 1/q + 744 + · · · ellj(x) Weierstrass σ/℘/ζ function ellsigma(w, z), ellwp, ellzeta periods/quasi-periods ellperiods(E, {flag}), elleta(w) (2iπ/ω2)kEk(τ) elleisnum(w, k, {flag}) modified Dedekind η func. (1 − qn) eta(x, {flag}) Jacobi sine theta function theta(q, z) k-th derivative at z=0 of theta(q, z) thetanullk(q, k) Weber’s f functions weber(x, {flag}) Riemann’s zeta ζ(s) = n−s zeta(s) Binary Quadratic Forms create ax2 + bxy + cy2 (distance d) Qfb(a, b, c, {d}) reduce x (s = √ D, l = s ) qfbred(x, {flag}, {D}, {l}, {s}) composition of forms x*y or qfbnucomp(x, y, l) n-th power of form x^n or qfbnupow(x, n) composition without reduction qfbcompraw(x, y) n-th power without reduction qfbpowraw(x, n) prime form of disc. x above prime p qfbprimeform(x, p) class number of disc. x qfbclassno(x) Hurwitz class number of disc. x qfbhclassno(x) Solve Q(x, y) = p in integers, p prime qfbsolve(Q, p) Quadratic Fields quadratic number ω = √ x or (1 + √ x)/2 quadgen(x) minimal polynomial of ω quadpoly(x) discriminant of Q( √ D) quaddisc(x) regulator of real quadratic field quadregulator(x) fundamental unit in real Q(x) quadunit(x) class group of Q( √ D) quadclassunit(D, {flag}, {t}) Hilbert class field of Q( √ D) quadhilbert(D, {flag}) ray class field modulo f of Q( √ D) quadray(D, f, {flag}) General Number Fields: Initializations A number field K is given by a monic irreducible f ∈ Z[X]. init number field structure nf nfinit(f, {flag}) nf members: polynomial defining nf , f(θ) = 0 nf .pol number of real/complex places nf .r1/r2/sign discriminant of nf nf .disc T2 matrix nf .t2 vector of roots of f nf .roots integral basis of ZK as powers of θ nf .zk different nf .diff codifferent nf .codiff index nf .index recompute nf using current precision nfnewprec(nf) init relative rnf given by g = 0 over K rnfinit(nf , g) initbnf structure bnfinit(f, {flag}) bnf members: same as nf , plus underlying nf bnf .nf classgroup bnf .clgp regulator bnf .reg fundamental units bnf .fu torsion units bnf .tu compute a bnf from small bnf bnfinit(sbnf ) add S-class group and units, yield bnf s bnfsunit(nf , S) init class field structure bnr bnrinit(bnf , m, {flag}) bnr members: same as bnf , plus underlying bnf bnr.bnf big ideal structure bnr.bid modulus bnr.mod structure of (ZK/m)∗ bnr.zkst Basic Number Field Arithmetic (nf) Elements are t INT, t FRAC, t POL, t POLMOD, or t COL (on integral basis nf .zk). Basic operations (prefix nfelt): (nfelt)add, mul, pow, div, diveuc, mod, divrem, val, trace, norm express x on integer basis nfalgtobasis(nf , x) express element x as a polmod nfbasistoalg(nf , x) reverse polmod a = A(X) mod T(X) modreverse(a) integral basis of field def. by f = 0 nfbasis(f) field discriminant of field f = 0 nfdisc(f) smallest poly defining f = 0 (slow) polredabs(f, {flag}) small poly defining f = 0 (fast) polredbest(f, {flag}) are fields f = 0 and g = 0 isomorphic? nfisisom(f, g) is field f = 0 a subfield of g = 0? nfisincl(f, g) compositum of f = 0, g = 0 polcompositum(f, g, {flag}) subfields (of degree d) of nf nfsubfields(nf , {d}) roots of unity in nf nfrootsof1(nf ) roots of g belonging to nf nfroots({nf }, g) factor g in nf nffactor(nf , g) factor g mod prime pr in nf nffactormod(nf , g, pr) conjugates of a root θ of nf nfgaloisconj(nf , {flag}) apply Galois automorphism s to x nfgaloisapply(nf , s, x) quadratic Hilbert symbol (at p) nfhilbert(nf , a, b, {p}) Linear and algebraic relations poly of degree ≤ k with root x ∈ C algdep(x, k) alg. dep. with pol. coeffs for series s seralgdep(s, x, y) small linear rel. on coords of vector x lindep(x) Dedekind Zeta Function ζK, Hecke L series ζK as Dirichlet series, N(I) < b dirzetak(nf , b) init nfz for field f = 0 zetakinit(f) compute ζK(s) zetak(nfz, s, {flag}) Artin root number of K bnrrootnumber(bnr, chi, {flag}) L(1, χ), for all χ trivial on H bnrL1(bnr, {H}, {flag}) Class Groups & Units (bnf, bnr) a1, {a2}, {a3} usually bnr, subgp or bnf , module, {subgp} remove GRH assumption from bnf bnfcertify(bnf ) expo. of ideal x on class gp bnfisprincipal(bnf , x, {flag}) expo. of ideal x on ray class gp bnrisprincipal(bnr, x, {flag}) expo. of x on fund. units bnfisunit(bnf , x) as above for S-units bnfissunit(bnfs, x) signs of real embeddings of bnf .fu bnfsignunit(bnf ) narrow class group bnfnarrow(bnf ) Class Field Theory ray class number for mod. m bnrclassno(bnf , m) discriminant of class field ext bnrdisc(a1, {a2}, {a3}) ray class numbers, l list of mods bnrclassnolist(bnf , l) discriminants of class fields bnrdisclist(bnf , l, {arch}, {flag}) decode output from bnrdisclist bnfdecodemodule(nf , fa) is modulus the conductor? bnrisconductor(a1, {a2}, {a3}) conductor of character chi bnrconductorofchar(bnr, chi) conductor of extension bnrconductor(a1, {a2}, {a3}, {flag}) conductor of extension def. by g rnfconductor(bnf , g) Artin group of ext. def’d by g rnfnormgroup(bnr, g) subgroups of bnr, index <= b subgrouplist(bnr, b, {flag}) rel. eq. for class field def’d by sub rnfkummer(bnr, sub, {d}) same, using Stark units (real field) bnrstark(bnr, sub, {flag}) Ideals: elements, primes, or matrix of generators in HNF is id an ideal in nf ? nfisideal(nf , id) is x principal in bnf ? bnfisprincipal(bnf , x) give [a, b], s.t. aZK + bZK = x idealtwoelt(nf , x, {a}) put ideal a (aZK + bZK) in HNF form idealhnf(nf , a, {b}) norm of ideal x idealnorm(nf , x) minimum of ideal x (direction v) idealmin(nf , x, v) LLL-reduce the ideal x (direction v) idealred(nf , x, {v}) Ideal Operations add ideals x and y idealadd(nf , x, y) multiply ideals x and y idealmul(nf , x, y, {flag}) intersection of ideals x and y idealintersect(nf , x, y, {flag}) n-th power of ideal x idealpow(nf , x, n, {flag}) inverse of ideal x idealinv(nf , x) divide ideal x by y idealdiv(nf , x, y, {flag}) Find (a, b) ∈ x × y, a + b = 1 idealaddtoone(nf , x, {y}) coprime integral A, B such that x = A/B idealnumden(nf , x) Primes and Multiplicative Structure factor ideal x in nf idealfactor(nf , x) expand ideal factorization in nf idealfactorback(nf, f, e) decomposition of prime p in nf idealprimedec(nf , p) valuation of x at prime ideal pr idealval(nf , x, pr) weak approximation theorem in nf idealchinese(nf , x, y) give bid =structure of (ZK/id)∗ idealstar(nf , id, {flag}) discrete log of x in (ZK/bid)∗ ideallog(nf , x, bid) idealstar of all ideals of norm ≤ b ideallist(nf , b, {flag}) add Archimedean places ideallistarch(nf , b, {ar}, {flag}) init prmod structure nfmodprinit(nf , pr) kernel of matrix M in (ZK/pr)∗ nfkermodpr(nf , M, prmod) solve Mx = B in (ZK/pr)∗ nfsolvemodpr(nf , M, B, prmod) Galois theory over Q Galois group of field Q[x]/(f) polgalois(f) initializes a Galois group structure G galoisinit(pol, {den}) action of p in nfgaloisconj form galoispermtopol(G, {p}) identify as abstract group galoisidentify(G) export a group for GAP/MAGMA galoisexport(G, {flag}) subgroups of the Galois group G galoissubgroups(G) is subgroup H normal? galoisisnormal(G, H) subfields from subgroups galoissubfields(G, {flag}, {v}) fixed field galoisfixedfield(G, perm, {flag}, {v}) Frobenius at maximal ideal P idealfrobenius(nf , G, P) ramification groups at P idealramgroups(nf , G, P) PARI-GP Reference Card (2) (PARI-GP version 2.6.1) is G abelian? galoisisabelian(G, {flag}) abelian number fields/Q galoissubcyclo(N,H,{flag},{v}) query the galpol package galoisgetpol(a,b,{s}) Relative Number Fields (rnf) Extension L/K is defined by T ∈ K[x]. absolute equation of L rnfequation(nf , T, {flag}) is L/K abelian? rnfisabelian(nf , T) relative nfalgtobasis rnfalgtobasis(rnf , x) relative nfbasistoalg rnfbasistoalg(rnf , x) relative idealhnf rnfidealhnf(rnf , x) relative idealmul rnfidealmul(rnf , x, y) relative idealtwoelt rnfidealtwoelt(rnf , x) Lifts and Push-downs absolute → relative repres. for x rnfeltabstorel(rnf , x) relative → absolute repres. for x rnfeltreltoabs(rnf , x) lift x to the relative field rnfeltup(rnf , x) push x down to the base field rnfeltdown(rnf , x) idem for x ideal: (rnfideal)reltoabs, abstorel, up, down Norms absolute norm of ideal x rnfidealnormabs(rnf , x) relative norm of ideal x rnfidealnormrel(rnf , x) solutions of NK/Q(y) = x ∈ Z bnfisintnorm(bnf , x) is x ∈ Q a norm from K? bnfisnorm(bnf , x, {flag}) initialize T for norm eq. solver rnfisnorminit(K, pol, {flag}) is a ∈ K a norm from L? rnfisnorm(T, a, {flag}) Maximal order ZL as a ZK-module relative polred rnfpolred(nf , T) relative polredabs rnfpolredabs(nf , T) characteristic poly. of a mod T rnfcharpoly(nf , T, a, {v}) relative Dedekind criterion, prime pr rnfdedekind(nf , T, pr) discriminant of relative extension rnfdisc(nf , T) pseudo-basis of ZL rnfpseudobasis(nf , T) General ZK-modules: M = [matrix, vec. of ideals] ⊂ L relative HNF / SNF nfhnf(nf , M), nfsnf reduced basis for M rnflllgram(nf , T, M) determinant of pseudo-matrix M rnfdet(nf , M) Steinitz class of M rnfsteinitz(nf , M) ZK-basis of M if ZK-free, or 0 rnfhnfbasis(bnf , M) n-basis of M, or (n + 1)-generating set rnfbasis(bnf , M) is M a free ZK-module? rnfisfree(bnf , M) Graphic Functions crude graph of expr between a and b plot(X = a, b, expr) High-resolution plot (immediate plot) plot expr between a and b ploth(X = a, b, expr, {flag}, {n}) plot points given by lists lx, ly plothraw(lx, ly, {flag}) terminal dimensions plothsizes() Rectwindow functions init window w, with size x,y plotinit(w, x, y) erase window w plotkill(w) copy w to w2 with offset (dx, dy) plotcopy(w, w2, dx, dy) clips contents of w plotclip(w) scale coordinates in w plotscale(w, x1, x2, y1, y2) ploth in w plotrecth(w, X = a, b, expr, {flag}, {n}) plothraw in w plotrecthraw(w, data, {flag}) draw window w1 at (x1, y1), . . . plotdraw([[w1, x1, y1], . . .]) Low-level Rectwindow Functions set current drawing color in w to c plotcolor(w, c) current position of cursor in w plotcursor(w) write s at cursor’s position plotstring(w, s) move cursor to (x, y) plotmove(w, x, y) move cursor to (x + dx, y + dy) plotrmove(w, dx, dy) draw a box to (x2, y2) plotbox(w, x2, y2) draw a box to (x + dx, y + dy) plotrbox(w, dx, dy) draw polygon plotlines(w, lx, ly, {flag}) draw points plotpoints(w, lx, ly) draw line to (x + dx, y + dy) plotrline(w, dx, dy) draw point (x + dx, y + dy) plotrpoint(w, dx, dy) draw point (x + dx, y + dy) plotrpoint(w, dx, dy) Postscript Functions as ploth psploth(X = a, b, expr, {flag}, {n}) as plothraw psplothraw(lx, ly, {flag}) as plotdraw psdraw([[w1, x1, y1], . . .]) Based on an earlier version by Joseph H. Silverman September 2013 v2.27. Copyright c 2013 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to Karim.Belabas@math.u-bordeaux.fr