
Instructions dependent on
the input are computed.

Dependent instructions are substi-
tuted with symbolic calls, path con-
dition manipulations are added.

Dependence graph of LLVM
instructions is created from the
control flow of a program.

A program simulating
original instructions in
a symbolic manner.

LLVM bitcode
is generated from
C++ source code.

LLVM LLVM
SYM

Henrich Lauko, Vladimír Štill, Petr Ročkai, Jan Mrázek and Jiří Barnat

DIVINE is a tool for verification of
parallel C++ programs. By using the
LLVM compilation framework with
the Clang compiler and the libc++ li-
brary it provides support for most
of the standard C++ library and all
the C++ language features. DIVINE
is rather efficient when dealing with

programs without inputs (for exam-
ple test cases). A big downside of the
current version of DIVINE is that for
programs with inputs, this input has to
be simulated by nondeterministic choice
which is very inefficient. Therefore
we present an approach for symbolic
representation of inputs in DIVINE.

Consider a simple program with
32 bit input variable x and a
branch on the value of this vari-
able. In the current DIVINE, this
program gives rise to 232 possible
memory configurations. In sym-
bolic version, possible values of
variables x and b are represented
symbolically using bitvector for-
mulae, therefore, there are only
two possible configurations at the
end of the program.

LART takes the LLVM bitcode of the program and libraries produced by the
compiler and transforms it into a bitcode which manipulates data symbolically.
In this modified program, any variable which can depend on an input value is
represented symbolically using bitvector formulae. Bitvector formulae describe
integers of fixed bit width with overflow and bitwise operations, and therefore

are well suited for exact representation of computer integers. All the manip-
ulations with such variables have to be transformed to their symbolic ver-
sions which modify the formulae accordingly. Furthermore, any branch which
depends on an input value has to put constraints on the possible values of sym-
bolic variables (this constraint is given in the form of a path condition formula).

Compiler

Explicit Approach

Symbolic Approach

Details of Program Transformation

Proposed Approach

LART

Verification
algorithm

SMT Solver

To take advantage of symbolic representation of states, we transform the LLVM bit-
code in such a way that it represents variables which can contain values dependent on
inputs symbolically. This transformation is performed by LART and is resented

in detail later. Apart from that, the verification algorithm is modified to handle
symbolic states with the help of an SMT solver.

Our approach aims for minimizing changes to the LLVM interpreter that is used to
execute instructions in DIVINE. The reason is that the interpreter is complex
and performance tuned and therefore it is not desirable to make it even more
complex by adding symbolic data manipulation into it. Instead, symbolic data are
to be handled by the program itself. To encode symbolic manipulations into the
program we transform the LLVM bitcode produced by the compiler and create
symbolic LLVM from it. This not only minimizes changes to the interpreter, but

the transformation can also be used for different representation of symbolic
data quite easily. The transformation is handled by LART – LLVM Abstraction &
Refinement Tool. Furthermore, DIVINE’s verification algorithm has to be
modified. It has to check if symbolic states are valid (nonempty), that is if
they can represent at least one concrete state. It also has to handle comparison
of symbolic states. For both of these tasks, DIVINE has to extract SMT formulae
from the program state and use SMT solver.

Interpreter

Verification
algorithm

Verification of Programs with Inputs

