
Unsatisfiability Proofs

Henrich Lauko

IA072 – Seminar on Concurrency

November 30, 2016



Is SAT solver credible?

Possible results:

SAT

UNSAT

TIMEOUT

1 / 22



Criteria on unsatisfiability proofs

easily checkable

small/reasonable size

proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver

2 / 22



Criteria on unsatisfiability proofs

easily checkable

small/reasonable size

proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver

2 / 22



Criteria on unsatisfiability proofs

easily checkable

small/reasonable size

proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver

2 / 22



Criteria on unsatisfiability proofs

easily checkable

small/reasonable size

proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver

2 / 22



Criteria on unsatisfiability proofs

easily checkable

small/reasonable size

proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver

2 / 22



Resolution

Resolution rule:

x∨ C ¬x∨D

C∨D
x

We write (x∨ C) � (¬x∨D) = (C∨D).

Resolution chain

((a∨ c) � (¬a∨ b)) � (¬a∨ ¬b) = (¬a∨ c)

Resolution chains are computed from left.

3 / 22



Resolution

Resolution rule:

x∨ C ¬x∨D

C∨D
x

We write (x∨ C) � (¬x∨D) = (C∨D).

Resolution chain

((a∨ c) � (¬a∨ b)) � (¬a∨ ¬b) = (¬a∨ c)

Resolution chains are computed from left.

3 / 22



Resolution proofs – TraceCheck proof format

ϕ = (¬b∨c) ∧ (a∨c) ∧ (¬a∨b) ∧ (¬a∨¬b) ∧ (a∨¬b) ∧ (b∨¬c)

(¬a∨ ¬b) � (a∨ ¬b) = ¬b

(a∨ c) � (¬a∨ b) � (¬b∨ c) = c

(b∨ ¬c) � (¬b) � (c) = ∅

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

4 / 22



Resolution proofs – TraceCheck proof format

ϕ = (¬b∨c) ∧ (a∨c) ∧ (¬a∨b) ∧ (¬a∨¬b) ∧ (a∨¬b) ∧ (b∨¬c)

(¬a∨ ¬b) � (a∨ ¬b) = ¬b

(a∨ c) � (¬a∨ b) � (¬b∨ c) = c

(b∨ ¬c) � (¬b) � (c) = ∅

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

4 / 22



Resolution proofs – TraceCheck proof format

ϕ = (¬b∨c) ∧ (a∨c) ∧ (¬a∨b) ∧ (¬a∨¬b) ∧ (a∨¬b) ∧ (b∨¬c)

(¬a∨ ¬b) � (a∨ ¬b) = ¬b

(a∨ c) � (¬a∨ b) � (¬b∨ c) = c

(b∨ ¬c) � (¬b) � (c) = ∅

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

4 / 22



Imperfections of resolution proofs

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

extremely large (dozens of
gigabytes)

hard to modify solver

computationaly hard for
solver to find correct order
of resolutions and determine
the clauses on which to
apply resolution

but easy to check – in
deterministic log space

5 / 22



Imperfections of resolution proofs

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

extremely large (dozens of
gigabytes)

hard to modify solver

computationaly hard for
solver to find correct order
of resolutions and determine
the clauses on which to
apply resolution

but easy to check – in
deterministic log space

5 / 22



Imperfections of resolution proofs

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

extremely large (dozens of
gigabytes)

hard to modify solver

computationaly hard for
solver to find correct order
of resolutions and determine
the clauses on which to
apply resolution

but easy to check – in
deterministic log space

5 / 22



Imperfections of resolution proofs

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

extremely large (dozens of
gigabytes)

hard to modify solver

computationaly hard for
solver to find correct order
of resolutions and determine
the clauses on which to
apply resolution

but easy to check – in
deterministic log space

5 / 22



Imperfections of resolution proofs

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

extremely large (dozens of
gigabytes)

hard to modify solver

computationaly hard for
solver to find correct order
of resolutions and determine
the clauses on which to
apply resolution

but easy to check – in
deterministic log space

5 / 22



Looking for better proofs

2003 – Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas l1, . . . , ln, where
ln = ∅.

We want lemmas to be implied by ϕ, because then
BCP(ϕ∧ ¬l) produces empty clause ∅.

6 / 22



Looking for better proofs

2003 – Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas l1, . . . , ln, where
ln = ∅.

We want lemmas to be implied by ϕ, because then
BCP(ϕ∧ ¬l) produces empty clause ∅.

6 / 22



Reverse unit propagation clause (RUP)

Unit clause and Unit propagation

Given a formula ϕ, if unit propagation on ϕ produces ∅, then
ϕ is unsatisfiable.

Reverse unit propagation clause

Let C = (l1 ∨ l2 · · ·∨ ln) and ¬C = (¬l1)∧ (¬l2)∧ · · ·∧ (¬ln).
Then C is RUP clause with respect to ϕ, if ϕ∧ ¬C `1 ∅.

Reverse because unit clauses ¬C are propagated back into
earlier clauses.

Typical RUP clauses are the learned clauses in CDCL.

7 / 22



Reverse unit propagation clause (RUP)

Unit clause and Unit propagation

Given a formula ϕ, if unit propagation on ϕ produces ∅, then
ϕ is unsatisfiable.

Reverse unit propagation clause

Let C = (l1 ∨ l2 · · ·∨ ln) and ¬C = (¬l1)∧ (¬l2)∧ · · ·∧ (¬ln).
Then C is RUP clause with respect to ϕ, if ϕ∧ ¬C `1 ∅.

Reverse because unit clauses ¬C are propagated back into
earlier clauses.

Typical RUP clauses are the learned clauses in CDCL.

7 / 22



RUP format

RUP proof

Given a fomula ϕ, a clausal proof P = {l1, . . . , ln} is a valid RUP
proof for ϕ if ln = ∅ and for all li holds that:

ϕ∧ l1 ∧ · · ·∧ li−1 ∧ ¬li `1 ∅

ϕ = (¬b∨c) ∧ (a∨c) ∧ (¬a∨b) ∧ (¬a∨¬b) ∧ (a∨¬b) ∧ (b∨¬c)

Clausal proof (RUP)

-2 0
3 0
0

Pϕ := {(¬b), (c), ∅}
ϕ∧ (b) `1 ∅
ϕ∧ (¬b)∧ (¬c) `1 ∅
ϕ∧ (¬b)∧ (c)∧ (¬∅) `1 ∅

8 / 22



RUP format

RUP proof

Given a fomula ϕ, a clausal proof P = {l1, . . . , ln} is a valid RUP
proof for ϕ if ln = ∅ and for all li holds that:

ϕ∧ l1 ∧ · · ·∧ li−1 ∧ ¬li `1 ∅

ϕ = (¬b∨c) ∧ (a∨c) ∧ (¬a∨b) ∧ (¬a∨¬b) ∧ (a∨¬b) ∧ (b∨¬c)

Clausal proof (RUP)

-2 0
3 0
0

Pϕ := {(¬b), (c), ∅}
ϕ∧ (b) `1 ∅
ϕ∧ (¬b)∧ (¬c) `1 ∅
ϕ∧ (¬b)∧ (c)∧ (¬∅) `1 ∅

8 / 22



RUP checking

1 RUPchecker(CNF formula ϕ, queue Q of lemmas)

2 while Q is not empty

3 l← Q.dequeue ()

4 ϕ ′ ← BCP(ϕ∧¬l)

5 if (∅ 6∈ ϕ ′) then

6 return "checking failed"

7 ϕ← BCP(ϕ∧ l)

8 if (∅ ∈ ϕ) then

9 return UNSAT

10 return "all lemmas validated"

1 BCP(CNF formula ϕ)

2 while ∃(x) ∈ ϕ

3 for c ∈ ϕ with ¬x ∈ c

4 c← c \ {¬x}

5 for c ∈ ϕ with x ∈ c

6 ϕ← ϕ \ {c}

7 return F

9 / 22



RUP summary

Pros
significantly smaller

minor modifications to solver

Cons

expensive checking

complex algorithms for
checking

DRUP – Delete Reverse Unit Propagtion

Format extends RUP by integrating clause deletion information
into proofs.

10 / 22



RUP summary

Pros
significantly smaller

minor modifications to solver

Cons

expensive checking

complex algorithms for
checking

DRUP – Delete Reverse Unit Propagtion

Format extends RUP by integrating clause deletion information
into proofs.

10 / 22



Generalization of clausal proofs

Clauses in clausal proof are redundant clauses.

11 / 22



Generalization of clausal proofs

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

11 / 22



Generalization of clausal proofs

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

2 asymmetric tautology (AT) – if ALA(ϕ,C) has property T

Asymmetric literal addition (ALA)

ALA(ϕ,C) computes C until fixpoint as follows, if l1, . . . , lk ∈ C and there
is a clause (l1 ∨ · · ·∨ lk ∨ l) ∈ ϕ \ {C} for some literal l, let C := C∨ ¬l.

11 / 22



Generalization of clausal proofs

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

2 asymmetric tautology (AT) – if ALA(ϕ,C) has property T

3 resolution tautology (RT) = blocked clauses

Asymmetric literal addition (ALA)

ALA(ϕ,C) computes C until fixpoint as follows, if l1, . . . , lk ∈ C and there
is a clause (l1 ∨ · · ·∨ lk ∨ l) ∈ ϕ \ {C} for some literal l, let C := C∨ ¬l.

Resolution property RP

(i) C has property P or (ii) There is a literal l ∈ ϕ such that for each
clause C ′ ∈ ϕ with ¬l ∈ C ′, each resolvent C � C ′ has P.

11 / 22



Generalization of clausal proofs

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

2 asymmetric tautology (AT) – if ALA(ϕ,C) has property T

3 resolution tautology (RT) = blocked clauses

4 resolution asymmetric tautology (RAT)

Asymmetric literal addition (ALA)

ALA(ϕ,C) computes C until fixpoint as follows, if l1, . . . , lk ∈ C and there
is a clause (l1 ∨ · · ·∨ lk ∨ l) ∈ ϕ \ {C} for some literal l, let C := C∨ ¬l.

Resolution property RP

(i) C has property P or (ii) There is a literal l ∈ ϕ such that for each
clause C ′ ∈ ϕ with ¬l ∈ C ′, each resolvent C � C ′ has P.

11 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)

– has T

(a∨ ¬c)

– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)

– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)

– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T

– has AT because unit propagation under (¬a∧ c) results in
conflict

– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict

– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)

– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)
– does not have T

– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)
– does not have T
– does not have AT

– does not have RT, there is no tautological resolvent on ¬a on
(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)
– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



Example

ϕ = (a∨ b) ∧ (b∨ c) ∧ (¬b∨ ¬c)

(a∨ ¬a)
– has T

(a∨ ¬c)
– does not have T
– has AT because unit propagation under (¬a∧ c) results in

conflict
– has RT on literal a, because ϕ contains no clauses with ¬a

(¬a∨ c)
– does not have T
– does not have AT
– does not have RT, there is no tautological resolvent on ¬a on

(a∨ b) and for c on (¬b∨ ¬c)

– has RAT, because (¬a∨ c) � (a∨ b) = (b∨ c) and unit
propagation on (¬b∧ ¬c) results in conflict

12 / 22



More redundancy properties

13 / 22



Extended resolution

Extension rule

Allows to iteratively add definitions of form x := a∧ b by adding
caluses (x∨ ¬a∨ ¬b)∧ (¬x∨ a)∧ (¬x∨ v).

14 / 22



Blocked clauses

Blocked clause

Given formula ϕ, a clause C, and literal l ∈ C, the literal l blocks
C with respect to ϕ if:

1 for each clause D ∈ ϕ with ¬l ∈ D, C �l D is tautology, or

2 ¬l ∈ C, i.e., C itself is tautology.

Example

ϕ = (¬b∨ c)∧ (a∨ c)∧ (¬a∨b)∧ (¬a∨¬b)∧ (a∨¬b)∧ (b∨¬c)

(¬b∨ c) is blocked on c, because (¬b∨ c) �c (b∨ ¬c) = (¬b∨ b).

Since ϕ is unsatisfiable, ϕ \ {(¬b∨ c)} must be unsatisfiable.

Blocked clause addition is generalization of extended resolution.
May add clauses not logically implied by the formula.

15 / 22



Blocked clauses

Blocked clause

Given formula ϕ, a clause C, and literal l ∈ C, the literal l blocks
C with respect to ϕ if:

1 for each clause D ∈ ϕ with ¬l ∈ D, C �l D is tautology, or

2 ¬l ∈ C, i.e., C itself is tautology.

Example

ϕ = (¬b∨ c)∧ (a∨ c)∧ (¬a∨b)∧ (¬a∨¬b)∧ (a∨¬b)∧ (b∨¬c)

(¬b∨ c) is blocked on c, because (¬b∨ c) �c (b∨ ¬c) = (¬b∨ b).

Since ϕ is unsatisfiable, ϕ \ {(¬b∨ c)} must be unsatisfiable.

Blocked clause addition is generalization of extended resolution.
May add clauses not logically implied by the formula.

15 / 22



Blocked clauses

Blocked clause

Given formula ϕ, a clause C, and literal l ∈ C, the literal l blocks
C with respect to ϕ if:

1 for each clause D ∈ ϕ with ¬l ∈ D, C �l D is tautology, or

2 ¬l ∈ C, i.e., C itself is tautology.

Example

ϕ = (¬b∨ c)∧ (a∨ c)∧ (¬a∨b)∧ (¬a∨¬b)∧ (a∨¬b)∧ (b∨¬c)

(¬b∨ c) is blocked on c, because (¬b∨ c) �c (b∨ ¬c) = (¬b∨ b).

Since ϕ is unsatisfiable, ϕ \ {(¬b∨ c)} must be unsatisfiable.

Blocked clause addition is generalization of extended resolution.
May add clauses not logically implied by the formula.

15 / 22



Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all D ∈ ϕ with
¬l ∈ D holds that

ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

RAT is generalization of RUP clauses:

ϕ∧ ¬C `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

and, if clause C is blocked on l, then for all D ∈ ϕ with ¬l ∈ D

holds that C contains a literal k 6= l such that ¬k ∈ D, so:

ϕ∧ (k)∧ (¬k) `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

16 / 22



Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all D ∈ ϕ with
¬l ∈ D holds that

ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

RAT is generalization of RUP clauses:

ϕ∧ ¬C `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

and, if clause C is blocked on l, then for all D ∈ ϕ with ¬l ∈ D

holds that C contains a literal k 6= l such that ¬k ∈ D, so:

ϕ∧ (k)∧ (¬k) `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

16 / 22



Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all D ∈ ϕ with
¬l ∈ D holds that

ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

RAT is generalization of RUP clauses:

ϕ∧ ¬C `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

and, if clause C is blocked on l, then for all D ∈ ϕ with ¬l ∈ D

holds that C contains a literal k 6= l such that ¬k ∈ D, so:

ϕ∧ (k)∧ (¬k) `1 ∅ =⇒ ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

16 / 22



Excursion to bounded variable addition

Bounded variable addition

Adds new variable to express dependenties of variables in clauses
and potentially shrinks the formula.

Example

ϕ = (¬a∨¬b∨¬c) ∧ (a∨d) ∧ (a∨e) ∧ (b∨d) ∧ (b∨e) ∧ (c∨d)

BVA introduces a new variable f.

ϕ = (f∨ a)∧ (f∨ b)∧ (f∨ c)∧ (¬f∨ d)∧ (¬f∨ e)

Cannot be expressed only with resolution steps.

17 / 22



Proofs with extended resolution – RAT and DRAT

Extends RUP format with RAT lemmas.

ϕ = (¬a∨ ¬b∨ ¬c)∧ (a∨ d) ∧

(a∨ e)∧ (b∨ d)∧ (b∨ e) ∧

(c∨ d)∧ (c∨ e)∧ (¬d∨ ¬e)

Uses BVA to replace first six
clauses by five new cluses using a
fresh new variable

New clauses are RAT clauses.

Final proof is only {(f), ∅}.

6 1 0
6 2 0
6 3 0

-6 4 0
-6 5 0

d 1 4 0
d 2 4 0
d 3 4 0
d 1 5 0
d 2 5 0
d 3 5 0

6 0
0

18 / 22



RAT checking

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all D ∈ ϕ with
¬l ∈ D holds that

ϕ∧ ¬C∧ (¬D \ (l)) `1 ∅

1 RATchecker(CNF formula ϕ, queue Q of lemmas)

2 while Q is not empty

3 L ← Q.dequeue ()

4 if ∅ 6∈ BCP(ϕ∧¬L) then // check if L has AT

5 let l be the first literal in L // L has RAT on l

6 forall C ∈ ϕ¬l do

7 R← C � L
8 if ∅ 6∈ BCP(ϕ∧¬R)

9 return "checking failed"

10 ϕ← BCP(ϕ∧ L)

11 if ∅ ∈ ϕ

12 return UNSAT

13 return "all lemmas validated"

19 / 22



Some comparison

20 / 22



Benchmarks

21 / 22



Proofs limitations

no method for easy extraction of unsatisfiability proofs from
lookahead solvers

how to handle preprocessing of formulas (Gaussian
Elimination, Cardinality Resolution, Symmetry Breaking)

no common API for proof manipulations

extraction of resolution proof from clausal proof

using clausal proofs for interpolants generation

22 / 22


	Unsatisfiability proofs

