Unsatisfiability Proofs

Henrich Lauko

IA072 - Seminar on Concurrency

November 30, 2016

Possible results:

- SAT
- UNSAT
- TIMEOUT

easily checkable

- easily checkable
- small/reasonable size

- easily checkable
- small/reasonable size
- proof checking quicker than solver

- easily checkable
- small/reasonable size
- proof checking quicker than solver
- proof production not slowing down the solver

- easily checkable
- small/reasonable size
- proof checking quicker than solver
- proof production not slowing down the solver
- minimize modifications of solver

Resolution rule:

$$\frac{x \lor C \quad \neg x \lor D}{C \lor D} x$$

We write $(x \lor C) \diamond (\neg x \lor D) = (C \lor D)$.

Resolution rule:

$$\frac{x \lor C \quad \neg x \lor D}{C \lor D} x$$

We write $(x \lor C) \diamond (\neg x \lor D) = (C \lor D)$.

Resolution chain

$$((a \lor c) \diamond (\neg a \lor b)) \diamond (\neg a \lor \neg b) = (\neg a \lor c)$$

Resolution chains are computed from left.

Resolution proofs – TraceCheck proof format

$$\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$$

Resolution proofs – TraceCheck proof format

$$\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$$

$$(\neg a \lor \neg b) \diamond (a \lor \neg b) = \neg b$$

$$(a \lor c) \diamond (\neg a \lor b) \diamond (\neg b \lor c) = c$$

$$(\mathbf{b} \lor \neg \mathbf{c}) \diamond (\neg \mathbf{b}) \diamond (\mathbf{c}) = \emptyset$$

Resolution proofs – TraceCheck proof format

(

$$\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$$

1

n

$$(\neg a \lor \neg b) \diamond (a \lor \neg b) = \neg b$$

$$a \lor c) \diamond (\neg a \lor b) \diamond (\neg b \lor c) = c$$

$$(b \lor \neg c) \diamond (\neg b) \diamond (c) = \emptyset$$

$$a \lor c) \diamond (\neg b) \diamond (c) = \emptyset$$

$$a \lor c) \diamond (\neg b) \diamond (c) = \emptyset$$

$$a \lor c) \diamond (\neg b) \diamond (c) = \emptyset$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

$$a \lor c) \diamond (\neg b) \diamond (c) = 0$$

1	-2	3	0	0		
T	-2	5	0	U		
2	1	3	0	0		
3	-1	2	0	0		
4	-1	-2	0	0		
5	1	-2	0	0		
6	2	-3	0	0		
7	-2	0	4	5	0	
8	3	0	1	2	3	
9	0	6	7	8	0	

0

1	-2	3	0	0		
2	1	3	0	0		
3	-1	2	0	0		
4	-1	-2	0	0		
5	1	-2	0	0		
6	2	-3	0	0		
7	-2	0	4	5	0	
8	3	0	1	2	3	
9	0	6	7	8	0	

0

extremely large (dozens of gigabytes)

- extremely large (dozens of gigabytes)
- hard to modify solver

			-		
-2	3	0	0		
1	3	0	0		
-1	2	0	0		
-1	-2	0	0		
1	-2	0	0		
2	-3	0	0		
-2	0	4	5	0	
3	0	1	2	3	0
0	6	7	8	0	
	1 -1 1 2 -2 3	1 3 -1 2 -1 -2 1 -2 2 -3 -2 0 3 0	$\begin{array}{cccc} -1 & 2 & 0 \\ -1 & -2 & 0 \\ 1 & -2 & 0 \\ 2 & -3 & 0 \\ \end{array}$ $\begin{array}{cccc} -2 & 0 & 4 \\ 3 & 0 & 1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- extremely large (dozens of gigabytes)
- hard to modify solver
- computationaly hard for solver to find correct order of resolutions and determine the clauses on which to apply resolution

-2	3	0	0		
1	3	0	0		
-1	2	0	0		
-1	-2	0	0		
1	-2	0	0		
2	-3	0	0		
-2	0	4	5	0	
3	0	1	2	3	0
0	6	7	8	0	
	1 -1 1 2 -2 3	-1 2 -1 -2 1 -2 2 -3 -2 0 3 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- extremely large (dozens of gigabytes)
- hard to modify solver
- computationaly hard for solver to find correct order of resolutions and determine the clauses on which to apply resolution
- but easy to check in deterministic log space

2003 - Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas $l_1,\ldots,l_n,$ where $l_n=\emptyset.$

2003 - Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas $l_1,\ldots,l_n,$ where $l_n=\emptyset.$

• We want lemmas to be implied by φ , because then BCP($\varphi \land \neg l$) produces empty clause \emptyset .

Unit clause and Unit propagation

Given a formula φ , if unit propagation on φ produces \emptyset , then φ is unsatisfiable.

Unit clause and Unit propagation

Given a formula φ , if unit propagation on φ produces \emptyset , then φ is unsatisfiable.

Reverse unit propagation clause

Let $C = (l_1 \lor l_2 \cdots \lor l_n)$ and $\neg C = (\neg l_1) \land (\neg l_2) \land \cdots \land (\neg l_n)$. Then C is RUP clause with respect to φ , if $\varphi \land \neg C \vdash_1 \emptyset$.

- *Reverse* because unit clauses ¬C are propagated back into earlier clauses.
- Typical RUP clauses are the learned clauses in CDCL.

RUP format

RUP proof

Given a fomula ϕ , a clausal proof $P = \{l_1, \ldots, l_n\}$ is a valid RUP proof for ϕ if $l_n = \emptyset$ and for all l_i holds that:

$$\phi \wedge \mathfrak{l}_1 \wedge \cdots \wedge \mathfrak{l}_{i-1} \wedge \neg \mathfrak{l}_i \hspace{0.2cm} \vdash_{1} \hspace{0.2cm} \emptyset$$

RUP format

RUP proof

Given a fomula ϕ , a clausal proof $P = \{l_1, \ldots, l_n\}$ is a valid RUP proof for ϕ if $l_n = \emptyset$ and for all l_i holds that:

$$\phi \wedge \mathfrak{l}_1 \wedge \cdots \wedge \mathfrak{l}_{\mathfrak{i}-1} \wedge \neg \mathfrak{l}_{\mathfrak{i}} \hspace{0.1 cm} \vdash_{1} \hspace{0.1 cm} \emptyset$$

 $\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$

Clausal proof (RUP)

$$P_{\varphi} := \{ (\neg b), (c), \emptyset \}$$

$$2 \quad 0 \qquad \qquad \varphi \land (b) \qquad \qquad \vdash_{1} \emptyset$$

$$3 \quad 0 \qquad \qquad \varphi \land (\neg b) \land (\neg c) \qquad \vdash_{1} \emptyset$$

$$0 \qquad \qquad \qquad \varphi \land (\neg b) \land (c) \land (\neg \emptyset) \qquad \vdash_{1} \emptyset$$

RUP checking

```
RUPchecker(CNF formula \phi, queue Q of lemmas)
1
2
       while Q is not empty
          l \leftarrow Q.dequeue()
3
          \varphi' \leftarrow BCP(\varphi \land \neg l)
4
          if (\emptyset \not\in \varphi') then
5
           return "checking failed"
6
          \varphi \leftarrow BCP(\varphi \land l)
7
          if (\emptyset \in \varphi) then
8
9
             return UNSAT
        return "all lemmas validated"
10
```

Pros

- significantly smaller
- minor modifications to solver

Cons

- expensive checking
- complex algorithms for checking

Pros

- significantly smaller
- minor modifications to solver

Cons

- expensive checking
- complex algorithms for checking

DRUP - Delete Reverse Unit Propagtion

Format extends RUP by integrating clause deletion information into proofs.

Clauses in clausal proof are redundant clauses.

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

• Clauses in clausal proof are **redundant** clauses.

Redundancy properties

1 tautology (T)

2 asymmetric tautology (AT) – if ALA(φ , C) has property T

Asymmetric literal addition (ALA)

ALA(φ , C) computes C until fixpoint as follows, if $l_1, \ldots, l_k \in C$ and there is a clause $(l_1 \lor \cdots \lor l_k \lor l) \in \varphi \setminus \{C\}$ for some literal l, let $C := C \lor \neg l$.

• Clauses in clausal proof are **redundant** clauses.

Redundancy properties

1 tautology (T)

- **2** asymmetric tautology (AT) if ALA(φ , C) has property T
- **3** resolution tautology (RT) = blocked clauses

Asymmetric literal addition (ALA)

 $\mathsf{ALA}(\phi, C) \text{ computes } C \text{ until fixpoint as follows, if } l_1, \dots, l_k \in C \text{ and there}$ is a clause $(l_1 \lor \dots \lor l_k \lor l) \in \phi \setminus \{C\}$ for some literal l, let $C := C \lor \neg l$.

Resolution property RP

(i) C has property P or (ii) There is a literal $l \in \varphi$ such that for each clause $C' \in \varphi$ with $\neg l \in C'$, each resolvent $C \diamond C'$ has P.

Clauses in clausal proof are redundant clauses.

Redundancy properties

1 tautology (T)

- **2** asymmetric tautology (AT) if $ALA(\phi, C)$ has property T
- **3** resolution tautology (RT) = blocked clauses
- 4 resolution asymmetric tautology (RAT)

Asymmetric literal addition (ALA)

 $\mathsf{ALA}(\phi, C) \text{ computes } C \text{ until fixpoint as follows, if } \mathfrak{l}_1, \dots, \mathfrak{l}_k \in C \text{ and there}$ is a clause $(\mathfrak{l}_1 \lor \dots \lor \mathfrak{l}_k \lor \mathfrak{l}) \in \phi \setminus \{C\}$ for some literal \mathfrak{l} , let $C := C \lor \neg \mathfrak{l}$.

Resolution property RP

(i) C has property P or (ii) There is a literal $l \in \phi$ such that for each clause $C' \in \phi$ with $\neg l \in C'$, each resolvent $C \diamond C'$ has P.

$$\phi = (a \lor b) \land (b \lor c) \land (\neg b \lor \neg c)$$

$$\bullet (a \lor \neg a)$$

$$\phi = (a \lor b) \land (b \lor c) \land (\neg b \lor \neg c)$$

$$\phi = (a \lor b) \land (b \lor c) \land (\neg b \lor \neg c)$$

$$(a \lor \neg a) - has T$$
$$(a \lor \neg c)$$

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor c) \ \land \ (\neg \mathfrak{b} \lor \neg c)$$

- $(a \lor \neg a)$ - has T $(a \lor \neg c)$
 - does not have T

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \land (\mathfrak{b} \lor \mathfrak{c}) \land (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(\alpha \lor \neg \alpha)$ - has T
- $\bullet (\mathfrak{a} \vee \neg c)$
 - does not have T $% \left(T\right) =\left(T\right) \left(T\right)$
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict

$$\phi = (a \lor b) \land (b \lor c) \land (\neg b \lor \neg c)$$

- $(a \lor \neg a)$ - has T
- $(a \vee \neg c)$
 - does not have T
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$

$$\phi = (a \lor b) \land (b \lor c) \land (\neg b \lor \neg c)$$

- $(a \lor \neg a)$ - has T
- $(a \vee \neg c)$
 - does not have T
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor \mathfrak{c}) \ \land \ (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(a \lor \neg a)$ - has T
- $(a \vee \neg c)$
 - does not have T
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$

• $(\neg a \lor c)$

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor \mathfrak{c}) \ \land \ (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(\alpha \lor \neg \alpha)$ - has T
- $(a \vee \neg c)$
 - does not have T
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$
- $\blacksquare \ (\neg \alpha \lor c)$
 - does not have T $% \left(T\right) =\left(T\right) \left(T\right)$

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor \mathfrak{c}) \ \land \ (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(a \vee \neg a)$
 - has T
- $\blacksquare (a \lor \neg c)$
 - does not have T
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$
- $\blacksquare \ (\neg \alpha \lor c)$
 - does not have T
 - does not have AT

$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor \mathfrak{c}) \ \land \ (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(a \vee \neg a)$
 - has T
- $(a \vee \neg c)$
 - does not have T $% \left(T\right) =\left(T\right) \left(T\right)$
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$

• $(\neg a \lor c)$

- does not have T $% \left(T\right) =\left(T\right) \left(T\right)$
- does not have AT
- does not have RT, there is no tautological resolvent on $\neg a$ on $(a \lor b)$ and for c on $(\neg b \lor \neg c)$

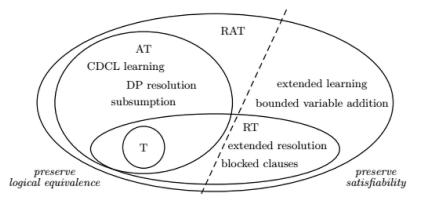
$$\phi = (\mathfrak{a} \lor \mathfrak{b}) \ \land \ (\mathfrak{b} \lor \mathfrak{c}) \ \land \ (\neg \mathfrak{b} \lor \neg \mathfrak{c})$$

- $(a \vee \neg a)$
 - has T
- $(a \vee \neg c)$
 - does not have T $% \left(T\right) =\left(T\right) \left(T\right)$
 - has AT because unit propagation under $(\neg \alpha \wedge c)$ results in conflict
 - has RT on literal a, because ϕ contains no clauses with $\neg a$

• $(\neg a \lor c)$

- does not have T
- does not have AT
- does not have RT, there is no tautological resolvent on $\neg a$ on $(a \lor b)$ and for c on $(\neg b \lor \neg c)$
- has RAT, because $(\neg a \lor c) \diamond (a \lor b) = (b \lor c)$ and unit propagation on $(\neg b \land \neg c)$ results in conflict

More redundancy properties



Extension rule

Allows to iteratively add definitions of form $x := a \wedge b$ by adding caluses $(x \vee \neg a \vee \neg b) \wedge (\neg x \vee a) \wedge (\neg x \vee \nu)$.

Blocked clause

Given formula ϕ , a clause C, and literal $l \in C$, the literal l blocks C with respect to ϕ if:

- **1** for each clause $D \in \phi$ with $\neg l \in D$, $C \diamond_l D$ is tautology, or
- **2** $\neg l \in C$, i.e., C itself is tautology.

Blocked clauses

Blocked clause

Given formula ϕ , a clause C, and literal $l \in C$, the literal l blocks C with respect to ϕ if:

1 for each clause $D \in \phi$ with $\neg l \in D$, $C \diamond_l D$ is tautology, or

2 $\neg l \in C$, i.e., C itself is tautology.

Example

$$\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$$

 $(\neg b \lor c)$ is blocked on c, because $(\neg b \lor c) \diamond_c (b \lor \neg c) = (\neg b \lor b)$.

Since φ is unsatisfiable, $\varphi \setminus \{(\neg b \lor c)\}$ must be unsatisfiable.

Blocked clause

Given formula $\phi,$ a clause C, and literal $l\in C,$ the literal l blocks C with respect to ϕ if:

1 for each clause $D \in \phi$ with $\neg l \in D$, $C \diamond_l D$ is tautology, or

2 $\neg l \in C$, i.e., C itself is tautology.

Example

$$\phi = (\neg b \lor c) \land (a \lor c) \land (\neg a \lor b) \land (\neg a \lor \neg b) \land (a \lor \neg b) \land (b \lor \neg c)$$

 $(\neg b \lor c)$ is blocked on c, because $(\neg b \lor c) \diamond_c (b \lor \neg c) = (\neg b \lor b)$.

Since ϕ is unsatisfiable, $\phi \setminus \{ (\neg b \lor c) \}$ must be unsatisfiable.

Blocked clause addition is generalization of extended resolution. May add clauses not logically implied by the formula.

Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all $D\in\phi$ with $\neg l\in D$ holds that

 $\phi \wedge \neg C \wedge (\neg D \setminus (l)) \vdash_1 \emptyset$

Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all $D\in\phi$ with $\neg l\in D$ holds that

$$\phi \land \neg C \land (\neg D \setminus (l)) \vdash_1 \emptyset$$

RAT is generalization of RUP clauses:

$$\phi \wedge \neg C \vdash_1 \emptyset \implies \phi \wedge \neg C \wedge (\neg D \setminus (\mathfrak{l})) \vdash_1 \emptyset$$

Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all $D\in\phi$ with $\neg l\in D$ holds that

$$\phi \wedge \neg C \wedge (\neg D \setminus (l)) \vdash_1 \emptyset$$

RAT is generalization of RUP clauses:

$$\phi \land \neg C \vdash_1 \emptyset \implies \phi \land \neg C \land (\neg D \setminus (\mathfrak{l})) \vdash_1 \emptyset$$

and, if clause C is blocked on l, then for all $D \in \varphi$ with $\neg l \in D$ holds that C contains a literal $k \neq l$ such that $\neg k \in D$, so:

$$\phi \wedge (k) \wedge (\neg k) \vdash_1 \emptyset \implies \phi \wedge \neg C \wedge (\neg D \setminus (\mathfrak{l})) \vdash_1 \emptyset$$

Bounded variable addition

Adds new variable to express dependenties of variables in clauses and potentially shrinks the formula.

Example

 $\phi = (\neg a \lor \neg b \lor \neg c) \land (a \lor d) \land (a \lor e) \land (b \lor d) \land (b \lor e) \land (c \lor d)$

BVA introduces a new variable f.

 $\varphi = (f \lor a) \land (f \lor b) \land (f \lor c) \land (\neg f \lor d) \land (\neg f \lor e)$

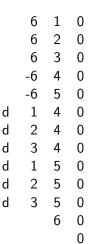
Cannot be expressed only with resolution steps.

Proofs with extended resolution – RAT and DRAT

Extends RUP format with RAT lemmas.

$$\varphi = (\neg a \lor \neg b \lor \neg c) \land (a \lor d) \land$$
$$(a \lor e) \land (b \lor d) \land (b \lor e) \land$$
$$(c \lor d) \land (c \lor e) \land (\neg d \lor \neg e)$$

- Uses BVA to replace first six clauses by five new cluses using a fresh new variable
- New clauses are RAT clauses.
- Final proof is only $\{(f), \emptyset\}$.



RAT checking

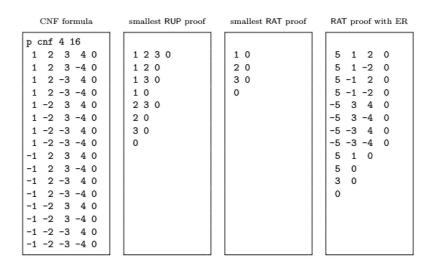
Resolution asymmetric tautology

Clause C has RAT on l with respect to ϕ if for all $D\in\phi$ with $\neg l\in D$ holds that

$$\phi \wedge \neg C \wedge (\neg D \setminus (l)) \vdash_1 \emptyset$$

```
RATchecker(CNF formula \varphi, queue Q of lemmas)
1
2
        while Q is not empty
           L \leftarrow Q.dequeue()
 3
            if \emptyset \notin BCP(\phi \land \neg L) then // check if L has AT
4
               let l be the first literal in L // L has RAT on l
5
               forall C \in \varphi_{\neg 1} do
6
                  \mathbf{R} \leftarrow \mathbf{C} \diamond \mathbf{I}.
7
                  if \emptyset \notin BCP(\phi \land \neg R)
8
                      return "checking failed"
9
           \varphi \leftarrow BCP(\varphi \land L)
10
           if \emptyset \in \varphi
11
               return UNSAT
12
        return "all lemmas validated"
13
```

Some comparison



	# variables		# clauses				time	
benchmark	input	proof	input	AT	RT	total	solving	checking
PH 10	90	379	415	99,682	867	100,973	5.28	24.72
PH 11	110	814	561	260,677	2,112	263,350	13.51	72.08
PH 12	132	1,450	738	1,512,453	3,954	1,517,145	145.29	3,521.23
Urq _3_5	45	2,126	446	281,761	6,243	288,450	8.33	17.38
Urq _3_6	54	3,842	688	1,156,477	11,364	1,168,529	52.69	152.36
Urq _3_7	42	1,147	342	102,950	3,315	106,607	2.20	3.95
Urq _3_8	44	1,518	416	149,286	4,422	154,124	3.70	5.86

	original			BVA pr	eproces	ssed	RAT proof checking		
benchmark	# vars	# cls	time	# vars	# cls	time	#AT #	RAT	time
PH 10	90	330	7.71	117	226	1.25	42,853	198	4.19
PH 11	110	440	84.42	151	281	12.34	225,959	295	152.82
PH 12	132	572	494.29	187	342	8.45	181,603	402	69.01
rbcl_07	1,128	57,446	52.92	1,784	7,598	2.88	72,073	19,681	6.76
rbcl_08	1,278	67,720	1,763.36	1,980	9,004	10.72	151,894	22,830	37.58
rbcl_09	1,430	79,118		2,190	10,492	129.20	882,213	26,639	2,631.28

- no method for easy extraction of unsatisfiability proofs from lookahead solvers
- how to handle preprocessing of formulas (Gaussian Elimination, Cardinality Resolution, Symmetry Breaking)
- no common API for proof manipulations
- extraction of resolution proof from clausal proof
- using clausal proofs for interpolants generation