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Is SAT solver credible?

Possible results:
m SAT
m UNSAT
= TIMEOUT
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Criteria on unsatisfiability proofs

easily checkable
small/reasonable size
proof checking quicker than solver

proof production not slowing down the solver

minimize modifications of solver



Resolution

Resolution rule:

xV C —-xV D
CVvD

We write (xV C)o (—xV D) = (CV D).



Resolution

Resolution rule:

xV C —-xV D
CVvD

We write (xV C)o (—xV D) = (CV D).
Resolution chain
((aVe)o(—aVb))o(—aV—b)=(—aVc)

Resolution chains are computed from left.
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Resolution proofs — TraceCheck proof format

@ = (—bVe) A (aVe) A (—aVvb) A (—aV—b) A (aV—b) A (bV—c)

(—aV—=b)o(aV—-b)=-b
(aVe)o(—aVb)o(-bVe)=c

(bV—=c)o(—b)o(c) =0



Resolution proofs — TraceCheck proof format

@ = (—bVe) A (aVe) A (—aVvb) A (—aV—b) A (aV—b) A (bV—c)

1 2 3 00
B 2 1 3 00
(—aV—=b)o(aV—-b)=-b 3 1 20 0
4 -1 2 0O
5 1 2 0 0
(aVe)o(—aVb)o(—bVe)=c 6 2 3 0 0

7 2 0 4 5 0

8 3 01 2 3 0
(bV—=c)o(—b)o(c)=0 9 0 6 7 8 0
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Imperfections of resolution proofs

1 2 3 00 m extremely large (dozens of
2 1 3 00 gigabytes)

3 1 2 00

4 -1 2 0 0

5 1 -2 0 0

6 2 -3 0 0
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Imperfections of resolution proofs

1 2 3 00 m extremely large (dozens of

2 1 3 00 gigabytes)

3 -1 200 m hard to modify solver

4 -1 200 m computationaly hard for

5 1 2 0 0 .

6 2 0 solver to find correct order

30 of resolutions and determine

the clauses on which to

72 0450 apply resolution

8 3 01 2 3 0
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Imperfections of resolution proofs

1 2 3 00 m extremely large (dozens of

2 1 3 00 gigabytes)

3 -1 200 m hard to modify solver

4 -1 200 m computationaly hard for

5 1 2 0 0 )

6 2 3 0 0 solver to find correct order

) of resolutions and determine

the clauses on which to

72 0450 apply resolution

8 3 01 2 3 0 ]

9 0 6 7 8 0 m but easy to check — in

deterministic log space



Looking for better proofs

2003 — Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas 1y, ..., 1,,, where
l, =0.



Looking for better proofs

2003 — Goldberg and Novikov introduced Clausal proofs

Clausal proof

Clausal proof P is represented as queue of lemmas 1y, ..., 1,,, where
l, =0.

m We want lemmas to be implied by ¢, because then
BCP(¢ A —1) produces empty clause 0.
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m Given a formula ¢, if unit propagation on ¢ produces @, then
@ is unsatisfiable.



Reverse unit propagation clause (RUP)

Unit clause and Unit propagation

m Given a formula ¢, if unit propagation on ¢ produces @, then
@ is unsatisfiable.

Reverse unit propagation clause

Let C= (L, VL---V1y) and =C = (1)) A (1) A - A (=Lln).
Then C is RUP clause with respect to ¢, if @ A—=C ;0.

m Reverse because unit clauses —C are propagated back into
earlier clauses.

m Typical RUP clauses are the learned clauses in CDCL.



RUP format

RUP proof

Given a fomula ¢, a clausal proof P ={1;,...,14} is a valid RUP
proof for ¢ if 1, =0 and for all 1; holds that:

(p/\ll/\"-/\li_l/\_‘li |—1 @



RUP format

RUP proof

Given a fomula ¢, a clausal proof P ={1;,...,14} is a valid RUP
proof for ¢ if 1, =0 and for all 1; holds that:

(p/\ll/\"-/\li_l/\_‘li |—1 @

¢ = (—bVe) A (aVe) A (—aVvb) A (maV—b) A (aV—b) A (bV—c)

Clausal proof (RUP)

2 0 @ A\ (b) 10
3.0 © A (=b) A (—c) 1 0
0 @A (D) A(C)A (=) 10



RUP checking

-
O W W N OO W N

N o O W N

RUPchecker (CNF formula ¢, queue Q of lemmas)
while Q is not empty
l+ Q.dequeue ()
@’ < BCP(p A—L)
if (D&g @') then
return "checking failed"
@ <+ BCP(p AL
if (@€ @) then
return UNSAT
return "all lemmas validated"

BCP (CNF formula o)
while 3(x) € @
for c€ @ with —x €c
c <+ c\{—x}
for c€ @ with x€c
@+ @ \{c}
return F




Pros Cons
m significantly smaller m expensive checking
m minor modifications to solver m complex algorithms for

checking
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RUP summary

Pros Cons
m significantly smaller m expensive checking
m minor modifications to solver m complex algorithms for
checking

DRUP — Delete Reverse Unit Propagtion

Format extends RUP by integrating clause deletion information
into proofs.
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Generalization of clausal proofs

m Clauses in clausal proof are redundant clauses.
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Generalization of clausal proofs

m Clauses in clausal proof are redundant clauses.

Redundancy properties

tautology (T)
asymmetric tautology (AT) — if ALA(¢, C) has property T

Asymmetric literal addition (ALA)

ALA(¢@, C) computes C until fixpoint as follows, if 11,...,1x € C and there
is a clause (13 V--- V1, V1) € @ \ {C} for some literal 1, let C:=CV —L

11/22



Generalization of clausal proofs

m Clauses in clausal proof are redundant clauses.

Redundancy properties

tautology (T)
asymmetric tautology (AT) — if ALA(¢, C) has property T
resolution tautology (RT) = blocked clauses

Asymmetric literal addition (ALA)

ALA(@, C) computes C until fixpoint as follows, if 13,...,1x € C and there
is aclause (11 V---V1x V1) € @\ {C} for some literal 1, let C:=CV —L.

Resolution property RP

(i) C has property P or (ii) There is a literal 1 € @ such that for each
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Generalization of clausal proofs

m Clauses in clausal proof are redundant clauses.

Redundancy properties

tautology (T)

asymmetric tautology (AT) — if ALA(¢, C) has property T
resolution tautology (RT) = blocked clauses
resolution asymmetric tautology (RAT)

Asymmetric literal addition (ALA)

ALA(¢@, C) computes C until fixpoint as follows, if 11,...,1x € C and there
is a clause (13 V--- V1 V1) € @ \{C} for some literal 1, let C:=CV —L

Resolution property RP

(i) C has property P or (ii) There is a literal 1 € @ such that for each

clause C’ € ¢ with =1 € C’, each resolvent C ¢ C’ has P.
11/22



@=(aVb) A (bVe) A (=bV —c)

m(aV—a)
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@=(aVb) A (bVe) A (=bV —c)

m(aV—a)
— has T
m(aV—c)
— does not have T
— has AT because unit propagation under (—a A c¢) results in
conflict
— has RT on literal a, because ¢ contains no clauses with —a
m(—aVc)
— does not have T
— does not have AT
— does not have RT, there is no tautological resolvent on —a on
(aVb) and for c on (—bV —c)
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@=(aVb) A (bVe) A (=bV —c)

m(aV—a)
— has T
m(aV—c)
— does not have T
— has AT because unit propagation under (—a A c¢) results in
conflict
— has RT on literal a, because ¢ contains no clauses with —a
m(—aVc)
— does not have T
— does not have AT
— does not have RT, there is no tautological resolvent on —a on
(aVb) and for c on (—bV —c)
— has RAT, because (—aVc¢)o(aVb)=(bVc)and unit
propagation on (—b /A —c) results in conflict
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More redundancy properties

AT
CDCL learning

DP resolution

/ extended learning
!

~

subsumption bounded variable addition

!
7 extended resolution

7
/ blocked clauses
/

PrESErvE Preserve
logical equivalence

satisfiability
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Extended resolution

Extension rule

Allows to iteratively add definitions of form x := a /A b by adding
caluses (x V—aV—=b) A (—xV a) A (—x Vv).
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Blocked clauses

Blocked clause

Given formula ¢, a clause C, and literal 1 € C, the literal 1 blocks
C with respect to ¢ if:

for each clause D € @ with =1 € D, C ¢ D is tautology, or
—leC, i.e., Citself is tautology.
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Blocked clauses

Blocked clause

Given formula ¢, a clause C, and literal 1 € C, the literal 1 blocks
C with respect to ¢ if:

for each clause D € @ with =1 € D, C ¢, D is tautology, or
—-le C, i.e., C itself is tautology.

Example

©=(bVe)A(aVc)A(—aVDb)A(—aV—-b)A(aV—b)A(bV —c)

(=bV c) is blocked on ¢, because (=bV c)¢oc (bV —c)=(—bVb).

Since @ is unsatisfiable, ¢ \ {(—b V ¢)} must be unsatisfiable.
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Blocked clauses

Blocked clause

Given formula ¢, a clause C, and literal 1 € C, the literal 1 blocks
C with respect to ¢ if:

for each clause D € @ with =1 € D, C ¢, D is tautology, or
—-le C, i.e., C itself is tautology.

Example

©=(bVe)A(aVc)A(—aVDb)A(—aV—-b)A(aV—b)A(bV —c)

(=bV c) is blocked on ¢, because (=bV c)¢oc (bV —c)=(—bVb).

Since @ is unsatisfiable, ¢ \ {(—b V ¢)} must be unsatisfiable.

Blocked clause addition is generalization of extended resolution.
May add clauses not logically implied by the formula.
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Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on 1 with respect to ¢ if for all D € ¢ with
—1 € D holds that

@ AN=CA(=D\ (1)1 0
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Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on 1 with respect to ¢ if for all D € ¢ with
—1 € D holds that

@ AN=CA(=D\ (1)1 0

RAT is generalization of RUP clauses:

eNAN=ChH 0 = @ A=CA(=D\ (1)1 0
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Resolution Asymmetric Tautologies (RAT)

Resolution asymmetric tautology

Clause C has RAT on 1 with respect to ¢ if for all D € ¢ with
—1 € D holds that

@ AN=CA(=D\ (1)1 0

RAT is generalization of RUP clauses:
A= ChH 0 = @A—=CA(=D\ (1)1 0

and, if clause C is blocked on 1, then for all D € ¢ with =1 € D
holds that C contains a literal k # 1 such that —k € D, so:

PeNANKIA(TK)F 0 = @A=CA(=D\ (1)) F1 0
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Excursion to bounded variable addition

Bounded variable addition

Adds new variable to express dependenties of variables in clauses
and potentially shrinks the formula.

Example

¢ = (—aV—=bV—=c) A (aVd) N\ (aVe) A (bVd) A (bVe) A (cVd)

BVA introduces a new variable f.
e=FfVAONFVD)ATFTVIA(-FVA)A(—-fVe)

m Cannot be expressed only with resolution steps.
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Proofs with extended resolution — RAT and DRAT

Extends RUP format with RAT lemmas.

o= (faV-bV-=c)A(aVd A
(aVe)AN(bVA)A(bVe) A
(cVAA(cVe)A(—dV —e)

W NN WNEFE OO O OO

m Uses BVA to replace first six
clauses by five new cluses using a
fresh new variable

m New clauses are RAT clauses.

O O 0 0 O QO

m Final proof is only {(f), 0}.

SO oo, PO OWODNDRE
O OO OO OO OOOOOoOoOo
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RAT checking

Resolution asymmetric tautology

Clause C has RAT on 1 with respect to @ if for all D € ¢ with
—1 € D holds that

@A=CAED\ (1) F1 0

1 RATchecker (CNF formula ¢, queue Q of lemmas)
2 while Q is not empty

3 L < Q.dequeue ()

4 if @ ¢BCP(¢@ A—L) then // check if L has AT

5 let 1 be the first literal in L // L has RAT on |
6 forall C€ ¢p— do

7 R+ CoL

8 if () € BCP(p A —R)

9 return "checking failed"

10 @ < BCP(p AL)

11 if Peg

12 return UNSAT

13 return "all lemmas validated"
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# variables # clauses time
benchmark | input proof | input AT RT total solving  checking
PH 1o 90 379 415 99,682 867 100,973 5.28 24.72
PH 1 110 814 | 561 260,677 2,112 263,350 13.51 72.08
PH 12 132 1,450 738 1,512,453 3,954 1,517,145 14529  3,521.23
Urq 35 45 2,126 446 281,761 6,243 288,450 8.33 17.38
Urq 36 54 3,842 688 1,156,477 11,364 1,168,529 52.69 152.36
Urq 37 42 1,147 | 342 102,950 3,315 106,607 2.20 3.95
Urq 3.8 44 1,518 416 149,286 4,422 154,124 3.70 5.86
original BVA preprocessed RAT proof checking
benchmark # vars #cls time | #vars #cls time #AT #RAT time
PH 10 920 330 7.71 117 226 1.25| 42,853 198 4.19
PH 14 110 440 84.42 151 281 12.34| 225,959 295 152.82
PH 12 132 572 494.29 187 342 845 181,603 402 69.01
rbcl 07 1,128 57,446 52.92 1,784 7598 288 | 72,073 19,681 6.76
rbcl 08 1,278 67,720 1,763.36 1,980 9,004 10.72 | 151,894 22,830 37.58
rbcl 09 1,430 79,118 — 2,190 10,492 129.20 882,213 26,639 2,631.28
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Proofs limitations

m no method for easy extraction of unsatisfiability proofs from
lookahead solvers

m how to handle preprocessing of formulas (Gaussian
Elimination, Cardinality Resolution, Symmetry Breaking)

m no common API for proof manipulations
m extraction of resolution proof from clausal proof

m using clausal proofs for interpolants generation
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