Statistics in Computer Science Seminar Exercises

Stanislav Katina, Mojmir Vinkler

October 15, 2016

1 Location characteristics

Exercise 1 (Code Vectorization). Implement two versions of mean function in R - thee first one is mean_slow = function(x) and use for loop to sum numbers. The second version is mean_fast = function(x) and use built-in function sum to sum numbers. Generate very long random vector of uniformly distributed random numbers and compare performance of both functions and also of built-in mean function.

Hints. Use runif(...) for generating random numbers and system.time({...}) for profiling.

Realizations will be denoted as x_1, x_2, \ldots, x_n , sorted realizations as $x_{(1)} \leq x_{(2)} \leq$ $\ldots \leq x_{(n)}$. Then we define following estimations of location characteristics (sample location characteristics):

- sample minimum X_{\min} , with realization $x_{\min} = x_{(1)}$;
- sample maximum X_{max} , with realization $x_{\text{max}} = x_{(n)}$;
- sample (arithmetic) mean \overline{X} , with realization $\overline{x} = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n}$ $\frac{1}{n}\sum_{j=1}^{n_j} x_j f_j, n_j \leq$ *n*, where f_j are frequencies (counts) of x_j and $n = \sum_j f_j$;
- sample mode X_{mod} , with realization x_{mod} is the most common value (in case of discrete variable it is value x in which probability function has its maximum; in case of continuous variable it is value x in which density function has its maximum);
- sample median \widetilde{X} (robust estimation of location), with realization

$$
\widetilde{x} = \begin{cases}\n x_{\left(\frac{n+1}{2}\right)} & \text{if } n \text{ is odd,} \\
 \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & \text{if } n \text{ is even;}\n\end{cases}
$$

distribution is symmetric, if $\bar{x} = \tilde{x} = x_{\text{mod}}$, distribution is positively skewed (right), if $\bar{x} > \tilde{x} > x_{\text{mod}}$ and distribution is negatively skewed (left), if $\bar{x} < \tilde{x} < x_{\text{mod}}$;

• sample quartiles there are three

– sample first (lower) quartile Q_1 , with realization $\widetilde{x}_{0.25}$ is a value that splits off the lowest 25% of data from the highest 75%,

$$
\Pr\left[x_{\min}, \widetilde{x}_{0.25}\right] = \Pr\left[X \le \widetilde{x}_{0.25}\right] = \frac{1}{4}, \Pr\left[\widetilde{x}_{0.25}, x_{\max}\right] = \Pr\left[X \ge \widetilde{x}_{0.25}\right] = \frac{3}{4};
$$

– sample second quartile (median) Q_2 , with realization $\tilde{x}_{0.5} = \tilde{x}$ is a value that splits off the lowest 50% of data from the highest $50\%,$

$$
\Pr\left[x_{\min}, \widetilde{x}_{0.5}\right] = \Pr\left[X \le \widetilde{x}_{0.5}\right] = \frac{1}{2}, \Pr\left[\widetilde{x}_{0.5}, x_{\max}\right] = \Pr\left[X \ge \widetilde{x}_{0.5}\right] = \frac{1}{2};
$$

– sample third (upper) quartile Q_3 , with realization $\tilde{x}_{0.75}$ is a value that splits off the lowest 75% of data from the highest 25%,,

$$
\Pr\left[x_{\min}, \widetilde{x}_{0.75}\right] = \Pr\left[X \le \widetilde{x}_{0.75}\right] = \frac{3}{4}, \Pr\left[\widetilde{x}_{0.75}, x_{\max}\right] = \Pr\left[X \ge \widetilde{x}_{0.75}\right] = \frac{1}{4};
$$

- sample deciles \widetilde{X}_k , with realizations \widetilde{x}_k splits data to ten buckets, i.e. $k/10$ of data are lower than a decile and $(10 - k)/10$ are higher, where $k \in \{0, 1, ..., 10\}$;
- sample percentile \widetilde{X}_p (read as 100*p*-percentile), with realization \widetilde{x}_p defined as

$$
\widetilde{x}_p = \begin{cases}\nx_{(k+1)} & \text{for } k \neq np, \\
\frac{1}{2} \left(x_{(k)} + x_{(k+1)} \right) & \text{for } k = np,\n\end{cases}
$$

where $k = |np|$, which is floor of np;

• sample five-number summary $(X_{\min}, Q_1, Q_2, Q_3, X_{\max})^T$, with realizations $(x_{\min},$ $\widetilde{x}_{0.25}, \widetilde{x}_{0.50}, \widetilde{x}_{0.75}, x_{\text{max}})^T.$

Robust location characteristics (resistant to outliers) are

• sample γ -truncated arithmetic average \overline{X}_q , with realization \overline{x}_q that is calculated as

$$
\overline{x}_g = \frac{1}{n-2g} \left(x_{(g+1)} + x_{(g+2)} + \ldots + x_{(n-g)} \right),
$$

where $g = {\gamma n}, g = {\gamma n}, \gamma = 0.1, 0.2$. More than $\gamma 100$ % observations must be replaced for the γ -truncated average to become large or small relative to the original [^{[1](#page-1-0)}breakdown point \overline{x}_g is therefore γ],

• sample γ -winsorized arithmetic average \overline{X}_w , with realization \overline{x}_w is defined as

$$
\overline{x}_w = \frac{1}{n} ((g+1)x_{(g+1)} + x_{(g+2)} + \ldots + (g+1)x_{(n-g)}).
$$

More than γ 100 % must be replaced for the γ -winsorized average to become large or small relative to the original [breakdown point \bar{x}_w is therefore γ].

 1 Breakdown point represents number of observations we need to significantly change value of location characteristics. For γ -truncated and γ -winsorized arithmetic average it is γn observations, for median $n/2$ observations and for simple arithmetic average changing just one observation is enough (that's the reason we say that arithmetic average is very sensitive to outliers).

Exercise 2 (height of 10-year old girls). Let's have $n = 12$ heights (in cm) of randomly sampled 10-year old girls sorted by height (**order** denoted as r_i for $x_{(i)}$; in case the values are equal, r_i is calculated as average of their order numbers).

Table 1: Sorted realizations x_i and their order r_i for heights of 10-year old girls

					$i \begin{array}{cccccccc} i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{array}$	
					$\boxed{x_{(i)}$ 131 132 135 141 141 141 141 142 143 146 146 151	
					r_i 1 2 3 5.5 5.5 5.5 8 9 10.5 10.5 12	

Then $\bar{x} = 140.83$, $\tilde{x} = \frac{1}{2}$ $\frac{1}{2}\left(x_{(6)}+x_{(7)}\right) = 141, \ \widetilde{x}_{0.25} = \frac{1}{2}$
 $\frac{1}{2}\left(x_{(6)}+x_{(7)}\right) = 144.5$ $\frac{1}{2}(x_{(3)}+x_{(4)}) = 138$, where $k =$ $\lfloor 12 \times 0.25 \rfloor = 3, Q_3 = \widetilde{x}_{0.75} = \frac{1}{2}$
Weite functions for coloulation $\frac{1}{2}(x_{(9)} + x_{(10)}) = 144.5$, where $k = \lfloor 12 \times 0.75 \rfloor = 9$.

Write functions for calculation of all location characteristics. Verify your functions on characteristics above. Don't use built-in functions for location characteristics such as mean, quantile, etc. Use $\gamma = 0.1$ for truncated and winsorized arithmetic averages.

2 Spread (variability) characteristics

Then we define following estimations of spread (variability) characteristics (sample spread characteristics):

• sample variance S^2 , with realization

$$
s^{2} = s_{n-1}^{2} = s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2};
$$

under linear transformation sample variance changes like this^{[2](#page-2-0)}

$$
s_y^2 = s_{a+bx}^2 = b^2 s_x^2,
$$

i.e.

$$
s_y^2 = s_{a+bx}^2 = \frac{1}{n-1} \sum_{i=1}^n (a+bx_i - \overline{a+bx})^2
$$

=
$$
\frac{1}{n-1} \sum_{i=1}^n (a+bx_i - (a+b\overline{x}))^2
$$

=
$$
\frac{1}{n-1} \sum_{i=1}^n (b(x_i - \overline{x}))^2 = b^2 s_x^2;
$$

• sample standard deviation S , with realization

$$
s = s_{n-1} = s_x = \sqrt{s_x^2};
$$

under linear transformation standard deviation changes like this

$$
s_y = s_{a+bx} = |b| \, s_x,
$$

²Equation tells us that variance of shifted and rescaled variable y is equal to square of scale multiplied by variance of original variable x.

• coefficient of variation V_k , with realization v_k represents normalized form of standard deviation (inversion of *signal-to-noise ratio*; fraction of variability to mean)

$$
v_k = \frac{s_x}{\overline{x}};
$$

it is usually denoted in percentage points, i.e. $100 \times (s_x/\overline{x})$ % and can be used only for realizations with positive values;

• sample variance of arithmetic average $S^2_{\overline{x}}$ $\frac{2}{X}$, with realization

$$
s_x^2 = \frac{s_x^2}{n};
$$

• sample standard deviation of arithmetic average (sample standard error) $S_{\overline{X}}$, with realization

$$
s_{\overline{x}} = \frac{s_x}{\sqrt{n}};
$$

• sample skewness B_1 , with realization

$$
b_1 = \frac{n^{-1} \sum_{i=1}^n (x_i - \overline{x})^3}{\left[n^{-1} \sum_{i=1}^n (x_i - \overline{x})^2\right]^{3/2}} = \frac{\sqrt{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left[\sum_{i=1}^n (x_i - \overline{x})^2\right]^{3/2}},
$$

distribution is *symmetric*, if $b_1 = 0$, *positive skewness* (density on the left side is steeper than the right side), if $b_1 > 0$ a *negative skewness* (density on the right side is steeper than the left side), if $b_1 < 0$;

• sample kurtosis B_2 , with realization

$$
b_2 = \frac{n^{-1} \sum_{i=1}^n (x_i - \overline{x})^4}{\left[n^{-1} \sum_{i=1}^n (x_i - \overline{x})^2\right]^2} - 3 = \frac{n \sum_{i=1}^n (x_i - \overline{x})^4}{\left[\sum_{i=1}^n (x_i - \overline{x})^2\right]^2} - 3,
$$

distribution is normal (*mesokurtic*), if $b_2 = 0$, pointy (*leptokurtic*), if $b_2 > 0$ and flat (platykurtic) , if $b_2 < 0$;

• sample sum of squares $SS = \sum_{i=1}^{n} (X_i - \overline{X})^2$, with realization

$$
SS_{\text{obs}} = \sum_{i=1}^{n} (x_i - \overline{x})^2,
$$

• sample sum of absolute deviation $SAD = \sum_{i=1}^{n} |X_i - \widetilde{X}_{0.5}|$, with realization

$$
SAD_{\text{obs}} = \sum_{i=1}^{n} |x_i - \widetilde{x}_{0.5}|;
$$

• sample arithmetic average deviation $MAD = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} |X_i - \widetilde{X}_{0.5}|$, with realization

$$
MAD_{\rm obs} = SAD_{\rm obs}/n;
$$

• sample range $D = X_{\text{max}} - X_{\text{min}}$, with realization

$$
d_{\text{obs}} = x_{\text{max}} - x_{\text{min}};
$$

• sample interquartile range $D_Q = Q_3 - Q_1$, with realization

$$
d_Q = \widetilde{x}_{0.75} - \widetilde{x}_{0.25};
$$

distribution is (between quartiles) symmetric, if $\tilde{x}_{0.75} - \tilde{x}_{0.50} = \tilde{x}_{0.50} - \tilde{x}_{0.25}$, positively skewed, if $\widetilde{x}_{0.75}-\widetilde{x}_{0.50} > \widetilde{x}_{0.50}-\widetilde{x}_{0.25}$ and negatively skewed, if $\widetilde{x}_{0.75}-\widetilde{x}_{0.50} < \widetilde{x}_{0.50}-\widetilde{x}_{0.25}$;

• sample decile range $D_D = \widetilde{X}_{0.9} - \widetilde{X}_{0.1}$, with realization

$$
d_D = \widetilde{x}_{0.9} - \widetilde{x}_{0.1};
$$

• sample percentile range $D_P = \widetilde{X}_{0.99} - \widetilde{X}_{0.01}$, with realization

$$
d_P = \widetilde{x}_{0.99} - \widetilde{x}_{0.01}.
$$

Robust spread characteristics (variability) are

• sample γ -truncated variance S_g^2 , with realization s_g^2 calculated as

$$
s_g^2 = \frac{1}{n - 2g - 1} \sum_{i=g+1}^{n-g} x_{(i)};
$$

more than γ 100 % must be replaced so that γ -truncated variance changes to large or small relative to the original s^2 [breakdown point s_g^2 is γ]; it applies that $s_g^2 < s^2$ because truncating removes outliers;

- sample γ -winsorized variance S_w^2 , with realizations s_w^2 ; more than $\gamma 100\%$ must be replaced so that gamma-winsorized variance changes to large or small relative to the original s^2 [breakdown point s_w^2 is γ]; it applies that $s_w^2 < s^2$ because winsorization pulls outliers closer to the mean;
- sample quartile coefficient of variation $V_{k,Q} = (Q_3 Q_1)/Q_2$, with realization $v_{k,Q}$ calculated as

$$
v_{k,Q} = \frac{\widetilde{x}_{0.75} - \widetilde{x}_{0.25}}{\widetilde{x}}
$$

.

Other robust spread characteristics characterized by modified boundaries are

• sample robust minimum and maximum ("inner boundaries") $X_{\min}^* = B_D =$ $Q_1 - 1.5D_Q$ and $X_{\text{max}}^* = B_H = Q_1 + 1.5D_Q$, with realizations defined as

$$
x_{\min}^* = b_D = \tilde{x}_{0.25} - 1.5 (\tilde{x}_{0.75} - \tilde{x}_{0.25}),
$$

$$
x_{\max}^* = b_H = \tilde{x}_{0.75} + 1.5 (\tilde{x}_{0.75} - \tilde{x}_{0.25}),
$$

values outside of boundaries are considered to be suspicious, potential outliers;

- sample robust minimum and maximum ("outer boundaries") defined as $B_H^* =$ $Q_1 - 3(Q_3 - Q_1), B_H^* = Q_3 + 3(Q_3 - Q_1)$, with realizations $b_D^* = \tilde{x}_{0.25} - 3d_Q, b_H^* = \tilde{x}_{0.25} - 3d_Q$ $\widetilde{x}_{0.75} + 3d_Q;$
	- − if there are any $x_i < b_D^*$ \lor $x_i > b_H^*$, we call them *distant values*^{[3](#page-5-0)},
	- − if $x_i \in \langle b_D^*, b_D \rangle \vee (b_H, b_H^*)$, these are *outer values*,
	- if $x_i \in \langle b_D, b_H \rangle$, these are *inner values* or *values close to median*;
	- normal distribution has these properties $B_H B_D = Q_3 + 1.5D_Q Q_1 + 1.5D_Q =$ $4D_Q = 4.2$; probability of $x_i \notin \langle B_D, B_H \rangle$ is then 0.04;
- sample robust skewness B_{1Q} and B_{1Q} and their variance under asymptotic normality B_1 , where $\cdot = Q$ or O, with realizations defined as
	- quartile skewness

$$
b_{1Q} = \frac{(\widetilde{x}_{0.75} - \widetilde{x}_{0.50}) - (\widetilde{x}_{0.50} - \widetilde{x}_{0.25})}{\widetilde{x}_{0.75} - \widetilde{x}_{0.25}}, Var_{as}(b_{1Q}) = 1.84,
$$

– octile skewness

$$
b_{1O} = \frac{(\widetilde{x}_{0.875} - \widetilde{x}_{0.50}) - (\widetilde{x}_{0.50} - \widetilde{x}_{0.125})}{\widetilde{x}_{0.875} - \widetilde{x}_{0.125}}, Var_{as}(b_{1O}) = 1.15.
$$

Exercise 3 (height of 10-year old girls). Calculate all spread characteristics for the sample with heights of 10-year old girls.

3 Basics of Probability

Exercise 4 (Simple random sample). In a simple random sample of size n from population of finite size N, each element has an equal probability of being chosen. If we avoid choosing any member of the population more than once, we call it **simple random sample without replacement^{[4](#page-5-1)}**. (Dalgaard 2008). If we put a member back to population after choosing it, we talk about **simple random sample with replacement**^{[5](#page-5-2)}. Let's have a set M with $N = 10$ elements and we want to choose $n = 3$ elements (a) without replacement and (b) with replacement. How many combinations there are? How do these combinations look like if $M = \{1, 2, \ldots, 10\}$? Do the same for $N = 100$, $n = 30$ and set $\mathcal{M} = \{1, 2, \ldots, 100\}$.

Solution without $\mathbb R$ code:

(a) Number of combinations is $\binom{N}{n}$. If $N = 10$ and $n = 3$, then $\binom{N}{n} = \frac{N!}{(N-n)!n!} = \binom{10}{3}$ $\binom{10}{3} = 120.$ (b) Number of combinations with replacement is $\binom{N+n-1}{n}$. If $N = 10$ and $n = 3$, then $\binom{N+n-1}{n} = \frac{(N+n-1)!}{(N-1)!n!} = \binom{10+3-1}{3}$ $\binom{3-1}{3}$ = 220. If $N = 100$ a $n = 30$, then $\binom{N+n-1}{n}$ = $\binom{100+30-1}{30}$ = 2.009491×10^{29} .

Hints. choose (n,k) , combn (n,k) ^{[6](#page-5-3)}, sample $(x=...,\text{ size}=...,\text{ replace}=...)$

³Symbol ∨ means "or" and symbol ∧ means "and".

 $4n$ -combination without replacement from N members of set M.

 $5n$ -combination with replacement from N members of set M.

⁶ requires library utils

Exercise 5 (Simple random sample). A group of people are labeled by their identification numbers (ID) from 1 to 30. Choose (a) randomly 5 people out of 30 without replacement, (b) randomly 5 people out of 30 with replacement and finally (c) randomly 5 people out of 30 without replacement, where people with ID between 28 and 30 have $4\times$ higher probability of being chosen than people with ID between 1 and 27.

Exercise 6 (Normal distribution). Let X be a random variable (it could represent for example adult height) and let's assume it is normally distributed with parameters μ (expectation or mean) and σ^2 (standard deviation) which is written as $X \sim N(\mu, \sigma^2)$, $\mu = 140.83, \sigma^2 = 33.79$. Normal distribution represents a probability distribution model for this random variable. Calculate probability $Pr(a < X < b) = Pr(X < b) - Pr(X < a) = F_X(b) - F_X(a)$, where $a = \mu - k\sigma$, $b = \mu + k\sigma$, $k = 1, 2, 3$.^{[7](#page-6-0)} Write a function that takes parameters μ , σ , a and b and calculates probability

$$
\Pr(a < X < b).
$$

Partial solution:

 $a = \mu - \sigma = 135.0171, b = \mu + \sigma = 146.6429,$ $Pr(|X - \mu| > \sigma) = 0.3173$, $Pr(|X - \mu| < \sigma) = 1 - 0.3173 = 0.6827$, $a = \mu - 2\sigma = 129.2042, b = \mu + 2\sigma = 152.4558,$ $Pr(|X - \mu| > 2\sigma) = 0.0455$, $Pr(|X - \mu| < 2\sigma) = 1 - 0.0455 = 0.9545$, $a = \mu - 3\sigma = 123.3913, b = \mu + 3\sigma = 158.2687,$ $Pr(|X - \mu| > 3\sigma) = 0.0027$, $Pr(|X - \mu| < 3\sigma) = 1 - 0.0027 = 0.9973$.

```
1 \mid mu \le 02 sig \leftarrow 1
3 |bin <- seq(mu-3*sig,mu+3*sig,by=sig)
4 \text{ [pnorm(bin[7]) - pom(bin[1]) } # 0.99730025 | pnorm(bin[6]) - pnorm(bin[2]) # 0.9544997
6 \frac{1}{1} pnorm(bin[5]) - pnorm(bin[3]) # 0.6826895
```
Probabilities $68.27 - 95.45 - 99.73$ are called (empirical) rule or 3-sigma rule.

Exercise 7 (Normal distribution). Let $X \sim N(\mu, \sigma^2)$, where $\mu = 150, \sigma^2 = 6.25$. Calculate $a = \mu - x_{1-\alpha}\sigma$ and $b = \mu + x_{1-\alpha}\sigma$ so that $\Pr(a \leq X \leq b) = 1 - \alpha$ is equal to 0.90, 0.95 a 0.99. Value $x_{1-\alpha}$ is a quantile of standardized normal distribution, i.e. Pr($Z = \frac{X-\mu}{\sigma}$ < $x_{1-\alpha}$) = 1 − α , Z ~ N(0, 1). Similarly to previous exercise, write a function that would take parameters μ , σ and α and return values a and b as a vector.

Hints. qnorm(alpha)

This gives us rule $90 - 95 - 99$ (so called **adjusted 3-sigma rule**). We used property $Pr(u_{\alpha/2} < Z < u_{1-\alpha/2}) = \Phi(u_{1-\alpha/2}) - \Phi(u_{\alpha/2}) = 1-\alpha$, where Φ is cumulative distribution function of normal distribution and in general $\alpha \in (0, 1/2)$; in the exercise we used $\alpha = 0.1$, 0.05 a 0.01.

⁷Note that $Pr(a < X < b)$ = $Pr(a \le X \le b)$ because probability of a point (here a and b) is zero for continuous random variables, i.e $Pr(a) = Pr(b) = 0$. This does not apply to discrete random variables.

Exercise 8 (Interactive Normal Distribution). Create an interactive [Shiny application](http://shiny.rstudio.com/) that will use the function defined in exercise 6 and show probability $Pr(X > 0)$, where μ and σ can be interactively set by user.

Hints. Download folder normalplot-nographics from study materials. Run it from R console with command runApp('normalplot-nographics', display.mode="showcase") from parent directory of normalplot-nographics (use function setwd to set your working directory if needed). Use code from previous examples in $server.R$ to finish the exercise.

```
Listing 1: ui.R
```

```
1 \mid # if missing, install with command 'install.packages('shiny')'
2 library(shiny)
3
4 # Define UI
5 | shinyUI(fluidPage(
6
7 # Application title
8 titlePanel("Normal Distribution"),
9
10 \parallel # Sidebar with a slider input for the number of bins
11 | numericInput("sig",
12 "sigma:",
13 min = 0.1,
14 max = 3,
15 step = 0.1,
16 value = 1),
17 | numericInput("mu",
18 "mean:",
19 min = -4,
20 max = 4,
21 value = 0,
22 step = 0.5),
23
24 textOutput("myTextOutput")
25 ))
                               Listing 2: server.R
1 library(shiny)
2
```

```
3 # Define server logic
4 shinyServer(function(input, output) {
5
6 output$myTextOutput <- renderText({
7 # TODO: use your code from previous exercise to show probabilities
8 paste0('My sigma is ', input$sig)
9 \mid \}10 })
```
Exercise 9 (Binomial Distribution). Let's assume that number of people preferring treatment A over treatment B follows a binomial distribution with parameters p (probability of success) and N (number of independent trials) denoted $Bin(N, p)$, where $N = 20, p = 0.5$, i.e. people

prefer both treatments equally. (a) What is the probability that 16 and more patients will prefer treatment A over treatment B ? (b) What is the probability that 16 and more or 4 or less patients will prefer treatment A over treatment B?

Solution without $\mathbb R$ code:

(a) $Pr(X \ge 16) = 1 - Pr(X < 16) = 1 - Pr(X \le 15) = 1 - \sum_{i:x_i \le 15} Pr(X = x_i) =$ $1 - \sum_{i:x_i \leq 15} {N \choose x_i} p^{x_i} (1-p)^{N-x_i} = 1 - \sum_{i:x_i \leq 15} {20 \choose x_i}$ x_i^{20} 0.5^{x_i} $(1-0.5)^{20-x_i} = 0.0059$. (b) Pr($X \le 4, X \ge 16$) = 1 - $\sum_{i:x_i \le 15} \Pr(X = x_i) + \sum_{i:x_i \le 4} \Pr(X = x_i)$ = 0.012. This probability is twice the previous one since $Bin(N, 0.5)$ is symmetric around 0.5.

Hints. pbinom(x, size=..., prob=...) gives you probability $Pr(X \leq x)$. How do you get probability $Pr(X \geq x)$ using this function?

Exercise 10 (Binomial Distribution). Let's assume that $Pr(swirl) = 0.533 = p_1$ is the probability of having dermatological pattern swirl on right thumb of male population and $Pr(other) = 0.467 = p_2$ is the probability of other patterns on right thumb of the same population. Random variable X represents number of swirls and Y number of other patterns, where $X \sim Bin(N, p_1)$ a $Y \sim Bin(N, p_2)$. Calculate

- 1. $Pr(X \le 120)$ if $N = 300$
- 2. $Pr(Y \le 120)$ if $N = 300$

Exercise 11 (Normal approximation of binomial distribution). $\frac{8}{3}$ $\frac{8}{3}$ $\frac{8}{3}$

Let $Pr(man) = 0.515$ be a proportion of men in population and $Pr(women) = 0.485$ proportion of women. Let X represent number of men and Y number of women. Under the assumption of model $Bin(N, p)$ calculate

- 1. $Pr(X \leq 3)$ if $N = 5$
- 2. $Pr(X \leq 5)$ if $N = 10$
- 3. $Pr(X \leq 25)$ if $N = 50$.

Compare these probabilities with those approximated by normal distribution $N(Np, Npq)$.

⁸ Approximation means "similar but not exactly equal", i.e. we approximate some distribution with a different one (that has certain advantages over the approximated one) or we approximate data with some distribution (that describes data with help of easily interpretable parameters)