Text Summarization

What?

An automatic summary is a text generated by a software, that is coherent and contains a significant amount of relevant information from the source text. Its compression rate τ is less than a third of the length of the original document.

- Produced from one or more documents
- Preserve important information
- Short

Why?

"too much information kills information"

- Professional summarizers
 - Expensive
 - Lacks expertise
- Reduce reading time
- Easier selection of documents
- Improves effectiveness of indexing
- Less biased
- Personalized summaries for QA systems

Summary Categorization

- Extractive
- Abstractive

- Single-document
- Multi-document

- Indicative
- Informative

- Headline summarization
- Ultra-summarization
- Keyword summarization

- Generic
- Query-focused
- Update

Summary Categorization

- Monolingual
- Multi-lingual
- Cross-lingual

- News
- Specialized
- Literary
- Encyclopedic...

- Author
- Expert
- Professional

Multimedia

Abstractive Summarization

- Understands the text, generate summary (NLG)
- Abstract

Very difficult

- Compression
- Fusion
- Information Extraction

Extractive Summarization

- Selects sentences from source document
- Extract

- Cohesion
- Coherence
- Unresolved co-references
- Discourse relations

Extractive Summarization

- Intermediate representation
- Scoring sentences
- Selecting summary

Intermediate Representation

- Topic representation
 - VSM, lexical chains, LSA, Bayesian topic models
- Indicator representation
 - sentence length, sentence location, proper nouns, numerical data...
- Graph representation
 - directed forward (backward), undirected

Scoring Methods

- Topic representation
 - ability of a sentence to express topic
- Indicator representation
 - machine learning
- Graph representation
 - stochastic methods

Examples [http://www.sciencedirect.com/science/article/pii/S0957417413002601]

Selecting a summary

Length constraint

- best n approach
 - Maximal marginal relevance
- Global selection
 - Maximize importance, maximize coherence, minimize redundancy

$$\omega_{\mathrm{MMR}}(s) = \underset{s \in D \backslash \mathrm{Sum}}{\mathrm{arg \, max}} [\lambda \underbrace{\sin_1(s,Q)}_{\mathrm{Relevance}} - (1-\lambda) \underbrace{\underset{s_{\mu} \in \mathrm{Sum}}{\mathrm{arg \, max}}}_{\mathrm{Redundancy}} \sin_2(s,s_{\mu})]$$

Evaluation

- Manual
- Semi-automatic
 - ROUGE-n
- Automatic

$$ROUGE - n = \frac{\sum_{n-grams} \in \{Sum_{can} \cap Sum_{ref}\}}{\sum_{n-grams} \in Sum_{ref}}$$

- ROUGE-n
 - Lexical level
 - Abbreviations (BEwT-E, PYRAMID)

Frequent Patterns

- Single-document
- Monolingual
- Graph representation
 - Dynamic graph mimicking reading
 - DGRMiner