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Introduction

� An ‘error-driven’ approach for learning an
ordered set of rules

� Adds annotations/classifications to each token of
the input

� Developed by Brill [1995] for POS tagging

� Also used for other NLP areas, e.g.
➢ text chunking [Ramshaw and Marcus 1995;

Florian et al. 2000]

➢ prepositional phrase attachment [Brill and Resnik

1994]

➢ parsing [Brill 1996]

➢ dialogue act tagging [Samuel 1998]
➢ named entity recognition [Day et al. 1997]
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Required Input
For application:

� The input to annotate:
POS: Recently, there has been a rebirth of empiricism in
the field of natural language processing.

Additionally for training:

� The correctly annotated input (‘truth’):
POS: Recently/RB ,/, there/EX has/VBZ been/VBN a/DT
rebirth/NN of/IN empiricism/NN in/IN the/DT field/NN
of/IN natural/JJ language/NN processing/NN ./.
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Preliminaries

� Templates of admissible transformation rules
(triggering environments)

� An initial-state annotator
POS:
Known words: Tag each word with its the most frequent tag.
Unknown words: Tag each capitalized word as proper noun
(NNP); each other word as common noun (NP).

� An objective function for learning
POS: Minimize the number of tagging errors.
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Transformation Rules
Rewrite rules: what to replace
POS: ti

� t j;

� � t j (replace tag ti / any tag by tag t j)
Triggering environment: when to replace
POS:
Non-lexicalized templates:

1. The preceding (following) word is
tagged ta.

2. The word two before (after) is tagged
ta.

3. One of the two preceding (following)
words is tagged ta.

4. One of the three preceding (following)
words is tagged ta.

5. The preceding word is tagged ta and
the following word is tagged tb.

6. The preceding (following) word is
tagged ta and the word two before (af-
ter) is tagged tb.

Lexicalized templates:

1. The preceding (following) word is wa.

2. The word two before (after) is wa.

3. One of the two preceding (following)
words is wa.

4. The current word is wa and the preced-
ing (following) word is wb.

5. The current word is wa and the preced-
ing (following) word is tagged ta.

6. The current word is wa.

7. The preceding (following) word is wa
and the preceding (following) tag is ta.

8. The current word is wa, the preceding
(following) word is wb and the preced-
ing (following) tag is ta.
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Learning Algorithm
1. Generate all rules that correct at least one error.

2. For each rule:
(a) Apply to a copy of the most recent state of the

training set.
(b) Score the result using the objective function.

3. Select the rule with the best score.

4. Update the training set by applying the selected
rule.

5. Stop if the score is smaller than some pre-set
threshold T; otherwise repeat from step 1.
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Rules Learnt
The first rules learnt by Brill’s POS tagger (with
examples):
# From To If
1 NN VB previous tag is TO

to/TO conflict/NN NB
2 VBP VB one of the previous 3 tags is MD

might/MD vanish/VBP VB
3 NN VB one of the previous two tags is MD

might/MD not reply/NN VB
4 VB NN one of the previous two tags is DT

the/DT amazing play/VB NN
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Tagging Unknown Words
Additional rule templates use character-based cues:
Change the tag of an unknown word from X to Y if:

1. Deleting the prefix (suffix) x, |x| 4, results in a
word.

2. The first (last) 1–4 characters of the word are x.

3. Adding the character string x, |x| 4, as a prefix
(suffix) results in a word.

4. Word w appears immediately to the left (right)
of the word.

5. Character z appears in the word.
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Unknown Words: Rules Learnt
# From To If
1 NN NNS has suffix -s

rules/NN NNS
4 NN VBN has suffix -ed

tagged/NN VBN
5 NN VBG has suffix -ing

applying/NN VBG
18 NNS NN has suffix -ss

actress/NNS NN
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Training Speedup: Hepple
Disallows interaction between learnt rules,
by enforcing two assumptions:

Sample independence: a state change in a sample
does not change the context of surrounding
samples

Rule commitment: there will be at most one state
change per sample

: Impressive reduction in training time, but the
quality of the results is reduced (assumptions do
not always hold)
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‘Lossless’ Speedup: Fast TBL
1. Store for each rule r that corrects at least one error:

� good

�

r

�

: the number of errors corrected by r

� bad

�

r

�

: the number of errors introduced by r

2. Select the rule b with the best score.

Stop if the score is smaller than a threshold T.

3. Apply b to each sample s.

4. Considering only samples in the set �

s

�

b changes s

� V

�

s

�

,

where V

�

s

�

is the set of samples whose tag might depend

on s (the ‘vicinity’ of s; s � V

�

s

�

):

�

Update good
�

r
�

and bad

�

r

�

for all stored rules,

discarding rules whose good

�

r

�

reaches 0.

�

Add rules with a positive good

�

r

�

not yet stored.

Repeat from step 2. [Ngai and Florian 2001]
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Text Chunking
A robust preparation for / alternative to full parsing.

� Input: A.P. Green currently has 2,664,098 shares
outstanding.

� Expected output: [NP A.P. Green] [ADVP
currently] [VB has] [NP 2,664,098 shares]
[ADJP outstanding].

� Alternative representation: A.P./B-NP Green/I-NP
currently/B-ADVP has/B-VP 2,664,098/B-NP
shares/I-NP outstanding/B-ADJP ./O

� Rules: Similar to those used for POS tagging,
considering

➢ Words ➢ POS tags ➢ Chunk tags
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Prepositional Phrase Attachment
Samples: 1. I [VB washed] [NP the shirt] [PP with soap and water].

2. I [VB washed] [NP the shirt] [PP with pockets].

Task: Is the prepositional phrase attached to the verb
(sample 1) or to the noun phrase (sample 2)?

Approach: Apply TBL to 4-tuple of base head words (tag
tuple as either VB or NP):

1. wash shirt with soap

2. wash shirt with pocket

Rules: Templates consider the words in the tuple and
their semantic classes (WordNet hierarchy)
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Evaluation
POS tagging:

Regular TBL Fast TBL Hepple
Accuracy 96.61% 96.61% 96.23%

Time 38:06h 17:21min 6:13min

Prepositional Phrase Attachment:
Regular TBL Fast TBL Hepple

Accuracy 81.0% 81.0% 77.8%
Time 3:10h 14:38min 4:01min

Scaling on input data:
Fast TBL: linear

Regular TBL: almost quadratic
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Advantages

� Can capture more context than Markov models

� Always learns on the whole data set – no ‘divide
and conquer’ : no data sparseness:
➢ Target evaluation criterion can be directly

used for training, no need for indirect
measures (e.g. entropy)

➢ No overtraining

� Can consider its own (intermediate) results on the
whole context :More powerful than other
methods like decision trees [Brill 1995, sec. 3]
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More Advantages

� Can do any processing, not only classification:
➢ Can change the structure of the input (e.g.

parse tree)
➢ Can be used as an postprocessor to any

annotation system

� Resulting model is easy to review and understand

� Very fast to apply – rule set can be converted into
a finite-state transducer [Roche and Schabes
1995] (for tagging and classification) or finite-state
tree automaton [Satta and Brill 1996] (for parsing
and other tree transformations)
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. . . and Disadvantages

� Greedy learning so the found rule sequence might
not be optimal

� Not a probabilistic method:
➢ Cannot directly return more than one result

(k-best tagging can be added but is not built-in [Brill
1995, sec. 4.4])

➢ Cannot measure confidence of results (through
[Florian et al. 2000] estimate probabilities by
converting transformation rule lists to decision trees
and computing distributions over equivalence classes)
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