Formal Biochemical Space with Semantics in Kappa and BNGL

David Šafránek

with T. Děd, M. Troják, M. Klement, J. Šalagovič, L. Brim

Systems Biology Laboratory Masaryk University Brno

SASB 2015, Saint-Malo, France

8 September 2015

Background and Motivation

Comprehensive Modelling Platform (CMP)

Background and Motivation

Biochemical Space in the context of CMP

- need for easy-to-understand but yet formal description of biological processes
- tackle the complexity combinatorial explosion

Annotation Standards

Connection to Bioinformatics

Biochemical Space

Eliminating the Gap Between Biology and Math

- biophysics employs a lot of indirect approximation in models
- combining rule-based approach with reaction-based approach allows compact mechanistic description
- mapping the models to such a description allows better and faster understanding

Abstraction from structural details

- Threonine residue phosphorylated protein
- Both residues phosphorylated protein

BCS abstraction

mixture → order not important
 84 different deviations

Biochemical Space Language

Key Features

- \bullet stoichiometry \rightarrow enumerated shortened forms
- $\bullet~\text{states} \rightarrow \text{encoding different forms of an entity}$
- composition
 - $\bullet~$ full \rightarrow complexation, coexistence in a solution
 - $\bullet \ \ \mathbf{partial} \rightarrow \mathsf{inner} \ \mathsf{structure} \ \mathsf{of} \ \mathsf{interest}$
- locations \rightarrow spatial organisation
- variables \rightarrow wildcards in definitions

Differences from Other Formalisms

Bio**C**hemical **S**pace **L**anguage is a rule-based language which has:

- no binding sites \rightarrow details of complexes formation abstracted out
 - abstract from bonds
- annotation purpose → specify what interacts with what without details of the interaction
- no quantitative data → only qualitative dynamics

Entity Declaration by Example

ENTITY ID. KaiC ENTITY NAME: circadian clock protein kinase KaiC STATES: LOCATIONS: cyt **CLASSIFICATION:** enzyme **DESCRIPTION**: Monomer component representing a core component of the circadian clock system LINKS: uniprot::Q79PF4, kegg::K08482, ncbi::AAM82686 **ORGANISM**: SYNPCC7942{Synpcc7942_1216} NOTES: COMPOSITION: S | T

Abstract Entity Specification

Class

KaiC.KaiC::cyt

Specialized class

Object

$\mathsf{KaiC}(\mathsf{S}\{\mathsf{u}\}|\mathsf{T}\{\mathsf{u}\}).\mathsf{KaiC}(\mathsf{S}\{\mathsf{u}\}|\mathsf{T}\{\mathsf{p}\})){::}\mathsf{cyt}$

Entity Identifier

Composition

Full composition \rightarrow structure of a complex

- KaiBC == KaiC.KaiB
- KaiC6 == KaiC.KaiC.KaiC.KaiC.KaiC.KaiC

 $\label{eq:partial composition} \textbf{Partial composition} \rightarrow \textsf{inner structure of an} \\ \textsf{entity} \\$

- KaiC(S{u}|T{p})
- cytb6f(f{-}|bl{n}|bhc{2-})
- $ps2(qb{2-}|qa{n}|chl{*}|p680{+}|pheo{-}|oec{4+}|yz{n})$

Nested Entity Identifier

• another way to specify a class entity

*compartment specification is obligatory

Examples of Entity Identifiers

- KaiC6::cyt
- KaiA.KaiA::cyt
- ATP::cyt
- CO3{2-}::liq
- KaiC(S{u}|T{p})::cyt
- CO_2 ::**?X** ; **X** = {lum, cell, liq, bub, pps, cyt}

Reaction

 $\begin{array}{rl} \mathsf{KaiC}(\mathsf{S}\{\mathsf{u}\}|\mathsf{T}\{\mathsf{u}\})::\mathsf{cyt} + \mathsf{KaiC}(\mathsf{S}\{\mathsf{p}\}|\mathsf{T}\{\mathsf{p}\})::\mathsf{cyt} \Rightarrow \mathsf{KaiC}(\mathsf{S}\{\mathsf{u}\}|\mathsf{T}\{\mathsf{u}\}).\mathsf{KaiC}(\mathsf{S}\{\mathsf{p}\}|\mathsf{T}\{\mathsf{p}\})::\mathsf{cyt} \\ & \text{object} & + & \text{object} \Rightarrow & \text{object} \end{array}$

Rule

$$\begin{array}{lll} \mathsf{KaiC::cyt} + \mathsf{KaiC::cyt} \Rightarrow \mathsf{KaiC}.\mathsf{KaiC::cyt} \\ \mathsf{class} &+ \mathsf{class} \Rightarrow \mathsf{class} \end{array}$$

Stringency of Entity Identifiers

• consider the rule:

 $\mathsf{S}\{\mathsf{p}\}{::}\mathsf{KaiC}{::}\mathsf{KaiC}\mathsf{6}{::}\mathsf{cyt} \Rightarrow \mathsf{S}\{\mathsf{u}\}{::}\mathsf{KaiC}{::}\mathsf{KaiC}\mathsf{6}{::}\mathsf{cyt}$

- both sides identify the same object in location
 cyt
- it is a complex **KaiC6** (assume it has a given well-defined full composition)
- which contains at least one KaiC protein
- whose partial composition contains **S**{**p**}

Translation of Entities to Kappa

Assume every entity composition is lexicographically ordered.

- **agent** ← entity name
- **agent name** ← entity name suffixed with a location
- interface ← partial composition (at least two internal states are required)
- site \leftarrow each member entity of partial composition
- site name ← name of a member entity
- **internal state** ← state of the entity
- **binding state** ← assign a generic structure, i.e., linear

BCSL Rules Expressed in Kappa

- left/right side S of a BCS rule is set of entities
 ⇒ expressed as a set E of agents in Kappa
- since each entity in S is lexicographically ordered, rules are ensured to be unique (up-to structural equivalence of reaction complexes),
- for full compositions ('.' operator) a labeling by bound sites is created (concretisation)
 ⇒ abstract meaning of coexistence is lost

BCS: 2 KaiC(S{p}) \Rightarrow KaiC(S{p}).KaiC(S{p}) **Kappa :** KaiC(S_p), KaiC(S_p) \rightarrow KaiC(S¹_p), KaiC(S¹_p)

BCS: $S\{p\}$::KaiC::KaiC6::cyt \Rightarrow $S\{u\}$::KaiC::KaiC6::cyt **Kappa :** KaiC(S¹_p), KaiC(S¹,T²), KaiC(S²,T³), KaiC(S³,T⁴), KaiC(S⁴,T⁵), KaiC(S⁵) \rightarrow

 $\rightarrow \mathsf{KaiC}(\mathsf{S}^1_{\mathit{u}}),\,\mathsf{KaiC}(\mathsf{S}^1,\mathsf{T}^2),\,\mathsf{KaiC}(\mathsf{S}^2,\mathsf{T}^3),\,\mathsf{KaiC}(\mathsf{S}^3,\mathsf{T}^4),\,\mathsf{KaiC}(\mathsf{S}^4,\mathsf{T}^5),\,\mathsf{KaiC}(\mathsf{S}^5)$

Case Study: Synechocystis

Metabolism

- over 1000 entities (objects) and over 500 rules
- entities concrete since there is no combinatorial explosion (rules are reactions)
- two mathematical models are mapped

Photosynthesis and Respiration

- over 100 entity classes and over 50 rules
- compaction is significant mainly for reactions
- one (lumped) mathematical model is mapped

Cyanobacterial circadian clock

- 18 class entities interacting in 18 rules
- creates over 500 object entities
- two (lumped) mathematical models are mapped

Cyanobacteria Circadian Clock BCS

Conclusions

- in the paper: formal syntax and semantics of BCS
- implementation: operational semantics in BNGL (then translated to DiVinE)
- currently we work on direct SOS to employ CTL model checking directly on BCS
- it will allow to study equivalences and reduction directly at the syntactic level of BCS

Thank You for your attention.

The Project Team

