
PA193 - Secure coding

principles and practices

Defense in depth

Petr Švenda svenda@fi.muni.cz

Based on slides by Zdeněk Říha

What prevents malicious code on server?

| PA193 - Defense in depth

Where would you attack?

Where is defense in depth applied?

How many layers are present?

Are these layers independent?

Internet

Server
Malicious code

2

rm -rf

Defense in depth

• It is an general approach/concept/strategy

• You have to apply it in your concrete project

• You have to think as an attacker

– Then select appropriate defenses/measures

• Your need to be able to find your weakest point

– And make sure that the weakest point is strong enough

• This lecture will give you some hints

| PA193 - Defense in depth 4

ACKNOWLEDGEMENT

Original slides made by Zdeněk Říha,

existing and new mistakes responsibility of me

5 | PA193 - Defense in depth

Defense in depth: Definition (Wikipedia)

• Non-IT: “defense in depth (also known as deep or elastic

defense) is a military strategy; it seeks to delay rather than

prevent the advance of an attacker, buying time and causing

additional casualties by yielding space.”

• IT: “defense in depth is an information assurance concept in

which multiple layers of security controls (defense) are

placed throughout an IT system. Its intent is to provide

redundancy in the event a security control fails or a

vulnerability is exploited that can cover aspects of personnel,

procedural, technical and physical for the duration of the

system's life cycle.”

| PA193 - Defense in depth 6

Defense in depth – key features

• IT: “defense in depth is an information assurance

concept in which multiple layers of security controls

(defense) are placed throughout an IT system. Its

intent is to provide redundancy in the event a

security control fails or a vulnerability is exploited

that can cover aspects of personnel, procedural,

technical and physical for the duration of the

system's life cycle.”

7 | PA193 - Defense in depth

Defense in depth – application code

• Code fails. We have to take it as a fact. All code has

a nonzero likelihood of containing one or more

vulnerabilities

• You need to change your outlook from "my code is

very good quality" to "though my code is the best it

can be with today's knowledge, it likely still has

security defects.“

– Michael Howard, Attack Surface (MSDN)

| PA193 - Defense in depth 8

Basic concepts

• Simplicity

– Keep it simple (stupid) principle - KISS

• Compartmentalization

– Principle of least privilege

– Minimize needed trust

• Expect failures

– Use more than one security mechanism (layered)

– Secure the weakest link, Fail securely

• Work in team

– Everyone can design defense he/she cannot breach

– Do not reinvent wheel, Code review, tools

| PA193 - Defense in depth 9

KISS principle

• Keep it as simple as possible

– KISS – Keep it Simple Stupid

– “Invented” in 1960s in aviation industry

• Simplicity

– Less things can go wrong

– Fewer possible inconsistencies

– Code is easier to understand

– When errors occur, they are easier to understand and fix

• Pay attention to interfaces and interactions

| PA193 - Defense in depth 10

Keep It Simple

• Don’t add unnecessary features

– Additional functionality means more ways to attack

• Use simple algorithms that are easy to verify

– Premature optimizations

– ‘Hacks’ in code makes it

• More difficult to understand

• More difficult to maintain

| PA193 - Defense in depth 11

FreeBSD-SA-11:08.telnetd

II. Problem Description

When an encryption key is supplied via the TELNET protocol, its length

is not validated before the key is copied into a fixed-size buffer.

III. Impact

An attacker who can connect to the telnetd daemon can execute arbitrary

code with the privileges of the daemon (which is usually the "root"

superuser).

IV. Workaround

No workaround is available, but systems not running the telnet daemon

are not vulnerable.

| PA193 - Defense in depth 12

Compartmentalization

• Divide system into modules

– Each module serves a specific purpose

– Different modules will have different access rights

– The access rights are related to activities

• Example application:

1. Need access to files

2. Reads user or network input

3. Execute privileged instructions (under root UID)

• Real example:

– Apache vs. suEXEC

| PA193 - Defense in depth 13

suEXEC - example

• User “Alice” has a website including some CGI scripts in her

own public_html folder, which can be accessed by

http://server/~alice.

• Bob now views Alice's webpage, which requires Apache to

run one of these CGI scripts.

• Instead of running all scripts as “wwwrun”, the scripts in

/home/alice/public_html will be wrapped using suEXEC and

run with Alice's user ID resulting in higher security and

eliminating the need to make the scripts readable and

executable for all users or everyone in the "wwwrun" group.

| PA193 - Defense in depth 14

Least Privilege

• A subject should be given only those privileges
necessary to complete its task
– Function, not identity, controls

– Rights added as needed and discarded after use (!)

• The original formulation from Jerome Saltzer
– “Every program and every privileged user of the system

should operate using the least amount of privilege
necessary to complete the job.”

• Dynamic assignments of privileges was later
discussed by Roger Needham and others

| PA193 - Defense in depth 15

Least Privilege - example

• On UNIX-based systems binding a program to a port number
<1024 requires root privilege.
– (Let’s ignore modern ‘capabilities’ at this moment)

• Many internet servers listening on well known ports (like webserver
on port 80, mailserver on port 25 etc.) need to be run with root
privilege.

• As soon as the port is bound the process should drop the root
privilege as it is typically not needed anymore.

• Many programs keep running with the root privileges.
– After a successful attack against the process the attacker receives the

power of root

– “Sendmail” was well known for problems of this kind

• Visual Studio required Admin privileges for long time =>
developers were admins => programs were requiring admin
privileges to execute

| PA193 - Defense in depth 16

Minimize needed trust

• Minimize trust relationships

• Clients, servers should not trust each other

– all can get hacked

– can be manipulated by users

• Trusted code should not call untrusted code

• Do not trust the input (!)

– Separate lecture on input validation will follow

• Do not trust the communication channel

– Use encryption, data authentication etc.

– Separate lecture on secure channel will follow

| PA193 - Defense in depth 17

Example: Web security

• Web server + web client

• Simple HTML form

(FORM,INPUT,TEXT,MAXLENGTH, …)

• Validity of fields checked by Javascript on clientside

| PA193 - Defense in depth 18

Example: Web security (2)

| PA193 - Defense in depth 19

• It is easy to avoid these checks

– Disable Javascript

– Send the “filled” form directly

– Tools (e.g. python request module)

Fail defaults

• Blacklist vs. Whitelist

• Example: firewall

– Default action is to drop packets

– The administrator configures the firewall to allow only the

packet types deemed acceptable though

• Example: input filtering

– E.g. HTML tags in blog posts

| PA193 - Defense in depth 21

Example - Blacklisting of HTML tags

• E.g. blocking the tags

– ‘applet’, ‘body’, ‘bgsound’, ‘base’, ‘basefont’, ‘embed’,

‘frame’, ‘frameset’, ‘head’, ‘html’, ‘id’, ‘iframe’, ‘ilayer’,

‘layer’, ‘link’, ‘meta’, ‘name’, ‘object’, ‘script’, ‘style’, ‘title’,

‘xml’

• A new version of HTML arrives (e.g. HTML5)

– New tags (like <audio>, <video>, …)

– New attributes (like formaction of <input>,…)

• Syntax errors

– How to recover from syntax errors

| PA193 - Defense in depth 22

Fail-safe vs. Fail-secure

• Fail-safe means that a device will not endanger

lives or properties when it fails

• Fail-secure means that access or data will not fall

into the wrong hands in a failure

• Example - if a building catches fire:

– fail-safe systems would unlock doors to ensure quick

escape and allow firefighters inside

– fail-secure would lock doors to prevent unauthorized

access to the building

| PA193 - Defense in depth 23

Failing securely (1)

• What’s wrong with the following code?

DWORD dwRet = IsAccessAllowed(...);
if (dwRet == ERROR_ACCESS_DENIED) {
 // Security check failed.
 // Inform user that access is denied.
} else {
 // Security check OK.
}

| PA193 - Defense in depth 24

Failing securely (2)

• This is a more secure alternative

DWORD dwRet = IsAccessAllowed(...);
if (dwRet == NO_ERROR) {
 // Secure check OK.
 // Perform task.
} else {
 // Security check failed.
 // Inform user that access is denied.
}

DWORD
dwRet=IsAccessAllowed(...);
if (dwRet ==
ERROR_ACCESS_DENIED) {
 // Security check failed.
 // Inform user that access is denied.
} else {
 // Security check OK.
}

| PA193 - Defense in depth 25

FreeBSD-SA-11:09.pam_ssh
I. Background

The PAM (Pluggable Authentication Modules) library provides a flexible framework for user

authentication and session setup / teardown. It is used not only in the base system, but also by a

large number of third-party applications.

The base system includes a module named pam_ssh which, if enabled, allows users to authenticate

themselves by typing in the passphrase of one of the SSH private keys which are stored in encrypted

form in the their .ssh directory. Authentication is considered successful if at least one of these keys

could be decrypted using the provided passphrase.

By default, the pam_ssh module rejects SSH private keys with no passphrase. A "nullok" option exists

to allow these keys.

II. Problem Description

The OpenSSL library call used to decrypt private keys ignores the passphrase argument if the

key is not encrypted. Because the pam_ssh module only checks whether the passphrase

provided by the user is null, users with unencrypted SSH private keys may successfully

authenticate themselves by providing a dummy passphrase.

III. Impact

If the pam_ssh module is enabled, attackers may be able to gain access to user accounts

which have unencrypted SSH private keys.

| PA193 - Defense in depth 28

Failing securely

• Do not expose system internals even in case of errors

– Stack traces

– Internal errors

– Paths

| PA193 - Defense in depth 29

Failing securely

• Many vulnerabilities are related to

– error handling,

– debugging,

– testing features,

– error messages.

• Make sure you handle errors

– Manual testing and review

– Static analysis for missing return values checks

– Fuzzing

31 | PA193 - Defense in depth

Failing securely

• Errors as side-channel for an attacker

– Analysis of system behavior (probing)

– Padding oracle attack (RSA PKCS1, CBC padding)

• Test

– Test if your system fails securely as you expect

– There may be nontrivial consequences, relationships, …

– Negative unit/integration tests

32 | PA193 - Defense in depth

“Security by Obscurity” is NOT secure

• “Security by Obscurity” vs. “Open design”

• Security should not depend on secrecy of design or
implementation (Kerckhoff)

• “Security by Obscurity” does not work (in long time)

– Reverse engineering

– Disassembler: machine code to assembly language

– Decompiler: machine code to higher-level language

• Assume an attacker knows everything you know

– Insider attacks are common

– If attacker has 1-in-a-million chance, and there are a million

attackers, you are out of luck

| PA193 - Defense in depth 35

Security by Obscurity vs. Open Design

• Open design does not mean that the full source

code must be available to everyone

• Logically crypto keys, passwords, … must remain

secret 

| PA193 - Defense in depth 36

Security by obscurity

• Examples where security by obscurity did not work

– GSM encryption algorithms: A5/1, A5/2, …

– WEP encryption

– CSS encryption on DVDs

– Mifare classic smartcards

– Car remotes (Keeloq, VW Group immobilizer…)

• Weak proprietary cipher, few global master keys…

• Obscurity adds additional burden to analysis

– Good because attacker needs to overcome (short term)

– Bad because less analysis is performed and system is

almost always vulnerable after first release (long term)

 | PA193 - Defense in depth 37

Separation of Privilege

• Require multiple conditions to grant privilege

– Separation of duty

• Failures are seen frequently

– Edward Snowden (2013)

• System admin, US lost classified information

– Unauthorized trading in UBS (Kweku Adoboli, 2010)

• Loss of 2 billion USD

– Fraudulent trades Societe Generale (Jerome Kerviel, 2008)

• Loss of 7.2 billion USD

| PA193 - Defense in depth 38

Do not share (runtime resources)

• Sharing often introduced to increase performance

– But often decrease original security

– (virtual perimeter)

• Share the minimal number of mechanisms

– Information can flow along shared channels

– Covert channels

• Use isolation

– Sandboxes

– Virtual machines

– Physical separation

| PA193 - Defense in depth 39

Vulnerability Note VU#911878 (CVE-2005-0109)

Description

Hyper-Threading (HT) Technology allows two series of instructions to run simultaneously and

independently on a single processor. With Hyper-Threading Technology enabled, the system

treats a physical processor as two "logical" processors. Each logical processor is allocated a

thread on which to work, as well as a share of execution resources such as cache memories,

execution units, and buses.

Information could potentially be deduced by local users using programs capable of shared

memory cache eviction analysis. Proof of concept code using timing and cache eviction

analysis techniques have demonstrated that cryptographic keys can be deduced on Intel

processors with Hyper-Threading technology (HTT) . It is likely that similar techniques could

be employed on other processor architectures that support simultaneous multithreading.

This vulnerability is applicable to many operating system platforms running on a hardware

platform that supports simultaneous multithreading (Intel HTT in particular).

| PA193 - Defense in depth 40

Vulnerability Note (CVE-2015-0565)

• DRAM: privilege escalation via Row Hammer

Description

The DRAM memory is used by most recent computers.

Researchers found that reading at a memory address can trigger a bit flip in a page located

near. To ease this attack, DRAM without ECC (Error Correcting Code) was used, and the

processor cache was flushed with the CLFLUSH assemble instruction.

A local attacker can therefore alter the content of DRAM memory, in order to corrupt data. If

these data are located in a page used by a privileged process, this attack can lead to a

privilege escalation.

| PA193 - Defense in depth 41

Human Acceptability

• Security mechanisms complicate accessing
resources and performing duties
– Hide complexity introduced by security mechanisms to

users

• Chernobyl nuclear power plant
– Some safety mechanisms disabled/bypassed

• Unpopularity of User Account Control (UAC) in
Microsoft Vista
– Number of alerts reduced in subsequent Windows

versions

• Certificate validation errors in Web browsers

| PA193 - Defense in depth 42

Human is often the weakest link

Google:
Sfdlk2c&432mo%
Skype:
*(&21mefd872!&

More than 60% of users

have weak passwords
password123

Google:
Sfdlk2c&432mo%
Skype:
*(&21mefd872!&

| PA193 - Defense in depth 43

KeePass+Dropbox

LastPass

1Password

MozillaSync

…

Don’t reinvent the wheel

• Use standard, tested components

• Use SW, libraries, designs, protocols that others are

successfully using

• In particular use standard crypto and crypto libraries

– Use standard good random number generators

– Use standards parsers etc.

– Don’t implement your own cryptography

• Bad examples

– Bad use of crypto: 802.11b

– Protocols without expert review: early 802.11i

– Ad-hoc changes to OpenSSL key generation: Debian (2008)

44 | PA193 - Defense in depth

Avoid High-Risk Technologies

• Some technologies are considered more insecure

than others

– This includes programming languages, services and

protocols

• Statistics of published vulnerabilities

– E.g. comparison of web browsers

• If the technology must be used, integrate security

wrappers, application firewalls etc.

• Java VM is a hot target these days

– Java as a language has always been considered a bit

more secure language than C/C++
45 | PA193 - Defense in depth

Learn from Mistakes

• Learn from your mistakes and mistakes of others

– How did the security error occur?

– Is the same bug repeated in the code?

– How could it have been prevented?

• Change your education/practices to avoid repeating

the same errors

• Examine mistakes/bugs of your “competitors” (!)

| PA193 - Defense in depth 46

SOFTWARE DESIGN PATTERNS

48 | PA193 - Defense in depth

Security patterns

• Applying the idea of Software design pattern to the

area of computer security

• Aim is to achieve some IT security goals

– Like confidentiality, integrity, … or some specific goal

• Comprehensive catalogs of security patterns exist

– E.g. Munawar Hafiz. Security Pattern Catalog

– http://www.munawarhafiz.com/securitypatterncatalog/index.php

| PA193 - Defense in depth 50

http://www.munawarhafiz.com/securitypatterncatalog/index.php
http://www.munawarhafiz.com/securitypatterncatalog/index.php

Security Pattern Catalog

Source: http://www.munawarhafiz.com/securitypatterncatalog/index.php

| PA193 - Defense in depth 51

Example: defense in depth

• Problem
– A security failure in a compartment can cause the whole system to crash. How can

we make the system robust against security failures?

• Solution
– Employ security measures at multiple layers of an application and throughout its

operating environment. defense In Depth is more a security principle. In fact this is
considered to be the core security principles for system architecture.

• Known Uses

– qmail does not employ only one security mechanism, rather it has security solutions
built in different levels of architecture.

• Source

– Hafiz et. al.

• Tags

– Deep defense

http://www.munawarhafiz.com/securitypatterncatalog/patterns.php?name=defense%20in%20Depth

| PA193 - Defense in depth 52

The SD3 Security Framework (Microsoft)

SD3

 Secure architecture and code

Threat analysis

Vulnerability reduction

Secure architecture and code

Threat analysis

Vulnerability reduction

Secure

by Design

Protection: Detection, defense, recovery,
management

Process: How to guides, architecture guides

People: Training

Protection: Detection, defense, recovery,
management

Process: How to guides, architecture guides

People: Training

Secure in

Deployment

Attack surface area reduced

Unused features turned off by default

Minimum privileges used

Attack surface area reduced

Unused features turned off by default

Minimum privileges used

Secure

by Default

| PA193 - Defense in depth 53

Summary

• Never assume impenetrable defense, completely

secure code, will-never-happen situations…

– Ask yourself: What will happen if defense fails?

• Defense in depth is general technique

– Tries to remove single point of failure

• Proper secure coding is one layer of defense

– Or better make it multiple layers

• Good design supports defense in depth!

59

Questions

| PA193 - Defense in depth

