
PA193 - Secure coding

principles and practices

Designing good and secure API

Automata-based programming

Petr Švenda svenda@fi.muni.cz

PROBLEM

4 PA193 | Secure API, Automata-based programming

What is this device for?

5 PA193 | Secure API, Automata-based programming

IBM 4758 Hardware Security Module (HSM)

Hardware Security Modules (HSM)

• Hardware Security Modules are high-security devices

– small security computer inside general purpose computer

• RAM, CPU, storage...

• resilience against tampering, side-channels...

– support various cryptographic operations

– keys are generated, stored and used directly on the device

– additional restricted code can be uploaded (firmware)

• HSM exposes its functionality via API

– E.g., encrypt supplied data with key generated inside HSM

• HSM is trusted, accessed by not-so-trusted applications

– HSM’s API serves as wall between different levels of trust

– Intentionally limits visibility and access

6 PA193 | Secure API, Automata-based programming

API

Security API

API

7 PA193 | Secure API, Automata-based programming

When we use API?

• All the time

• When using function from standard library

• When using external library

• When calling system (Win32 API, POSIX...)

• When calling methods of our own class

• ...

8 PA193 | Secure API, Automata-based programming

When we design API?

• Almost all the time

• Function signature is API for this function usage

• List of public methods in interface is its API

• When we create good API?

– good programming habit is to create reusable modules

– every module has its own API

– once module will get reused, API cannot be changed

easily

9 PA193 | Secure API, Automata-based programming

Application programming interface (API)

• Different types of API

1. Non-security API

– any library API (module/library interface)

– e.g., C++ STL, Boost library, Web API...

2. Cryptographic API

– set of functions for cryptographic operations

– e.g., Microsoft CryptoAPI, OpenSSL API...

3. Security API

– allows untrusted code to access sensitive resources in secure way

– e.g., PKCS#11 HSM module, suExec, OAuth

10 PA193 | Secure API, Automata-based programming

Language (in)dependent API

• Language dependent API

– API available only for one particular language

– ABI is relevant (calling convention, memory layout…)

• Language independent API

– Not restricted to particular languages

– E.g., Web API based on HTTP/REST/JSON

• Language bindings

– Bridge between particular language and library/OS API

– E.g., library implemented in C, but called from Python

– Additional API in target language with small proxy code

11 PA193 | Secure API, Automata-based programming

What is API and ABI?

• API = Application Programming Interface

– source code-based specification intended to be used as an

interface between software components to communicate

– classes, interfaces, methods...

• ABI = Application Binary Interface

– specification of interface on binary level

– size, binary representation and layout of data types

– function calling conventions (stdcall, decl...)

– how to make system calls (functions outside program memory)

– binary formats of data produced (little/big endian…)

• API != ABI, but both are necessary

12 PA193 | Secure API, Automata-based programming

Web API

• Web API = API used to invoke method on web server

– Usually via HTTP(S) with REST

– Language independent API

• E.g., Twitter API
– POST https://api.twitter.com/1.1/statuses/update.json?status=At%20PA193

• Application programming interface key (API key)

– Code supplied by program calling an API

– Identifies program, developer, user…

– Can be used to control usage (e.g., limit requests…)

13 PA193 | Secure API, Automata-based programming

Quiz – where is API?

• Language: C

– API: Functions listed in header files (*.h)

• Language: C++

– API: public methods of class

– API: public methods of abstract class

• Language: Java

– API: public methods of class

– API: methods of interface

• Twitter Web API

– API: HTTP/REST requests, response in JSON format

 14 PA193 | Secure API, Automata-based programming

© Martin Handford

PRINCIPLES OF GOOD API

15 PA193 | Secure API, Automata-based programming

Credits: Joshua Bloch

• Joshua Bloch, How to Design a Good API and Why

it Matters (Google)
– http://lcsd05.cs.tamu.edu/slides/keynote.pdf

– video: http://www.infoq.com/presentations/effective-api-design

• Reading/watching is highly recommended

• Many ideas taken from his presentation

– demonstrated on cryptographic libraries by myself

17 PA193 | Secure API, Automata-based programming

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design

Principles of good API (Joshua Bloch)

1. Easy to learn

2. Easy to use, even without documentation

3. Hard to misuse

4. Easy to read and maintain code that uses it

5. Sufficiently powerful to satisfy requirements

6. Easy to extend

7. Appropriate to audience

• http://lcsd05.cs.tamu.edu/slides/keynote.pdf

18 PA193 | Secure API, Automata-based programming

http://lcsd05.cs.tamu.edu/slides/keynote.pdf

Process of API design (Joshua Bloch)

1. Gather requirements

2. Start with short specification (1 page)

3. Write API early and often

4. Test and use your API

– especially when designing SPI (Service Providers Interface)

– write more plugins (one – NOK, two – difficult, three - OK)

5. Prepare for evolution and mistakes

– displease everyone equally

19 PA193 | Secure API, Automata-based programming

20 PA193 | Secure API, Automata-based programming

What is Service Provider Interface?

General principles - encapsulation

• API should do one thing and do it well

• As small as possible, but not smaller

– if in doubt, leave function out (you can add, but not remove)

• Implementation details should not leak into API

– try to hide as much as possible from user

• Minimalize accessibility (encapsulation)

– make public what really needs to be

– no public fields (attributes) except constants

• Make understandable names (self-explanatory, consistent,

easy to read when used)

23 PA193 | Secure API, Automata-based programming

if (key.length() < 80)
 generateAlert(”NSA can crack!”);

General principles - documentation

• Document rigorously

– JavaDoc, Doxygen…

– specify how function should be used

– class: what instance represents

– Method: contract between method and client

• preconditions, postconditions, side effects

– Parameters: who owns (ptr), units, format...

• Specific case of documentation are Annotations

– e.g., Microsoft SAL, pre&post conditions, Java annotations…

24 PA193 | Secure API, Automata-based programming

void* memcpy(void* destination, const void* source, size_t num);

void* memcpy(__out_bcount(num) void* destination,

 __in_bcount(num) const void* source, size_t num);

/**
 * \brief Output = HMAC-SHA-512(hmac key, input buffer)
 *
 * \param key HMAC secret key
 * \param keylen length of the HMAC key
 * \param input buffer holding the data
 * \param ilen length of the input data
 * \param output HMAC-SHA-384/512 result
 * \param is384 0 = use SHA512, 1 = use SHA384
 */

Which one you like more? Why?

26 PA193 | Secure API, Automata-based programming

POLARSSL
/**
 * \brief Output = HMAC-SHA-512(hmac key, input buffer)
 *
 * \param key HMAC secret key
 * \param keylen length of the HMAC key
 * \param input buffer holding the data
 * \param ilen length of the input data
 * \param output HMAC-SHA-384/512 result
 * \param is384 0 = use SHA512, 1 = use SHA384
 */

void sha512_hmac(const unsigned char *key, size_t keylen,
 const unsigned char *input, size_t ilen,
 unsigned char output[64], int is384);

OPENSSL

unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
 const unsigned char *d, size_t n, unsigned char *md,
 unsigned int *md_len);

OpenSSL – HMAC (hard to understand)

27 PA193 | Secure API, Automata-based programming

//hmac.h

unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
 const unsigned char *d, size_t n, unsigned char *md,
 unsigned int *md_len);

//envp.h

struct env_md_st
 {
 int type;
 int pkey_type;
 int md_size;
 unsigned long flags;
 int (*init)(EVP_MD_CTX *ctx);
 int (*update)(EVP_MD_CTX *ctx,const void *data,size_t count);
 int (*final)(EVP_MD_CTX *ctx,unsigned char *md);
 int (*copy)(EVP_MD_CTX *to,const EVP_MD_CTX *from);
 int (*cleanup)(EVP_MD_CTX *ctx);

 /* FIXME: prototype these some day */

 int (*sign)(int type, const unsigned char *m, unsigned int m_length,
 unsigned char *sigret, unsigned int *siglen, void *key);
 int (*verify)(int type, const unsigned char *m, unsigned int m_length,
 const unsigned char *sigbuf, unsigned int siglen,
....
 } /* EVP_MD */;

//ossl_typ.h

typedef struct env_md_st EVP_MD;

General principles - performance

• Consider performance impact of API decisions

– but be not influenced by implementation details

– underlying performance issues will be fixed eventually, but API

warping (for fixing past issue) remains

• Examples of bad performance decisions

– need for frequent allocations and copy constructors

• pass arguments by reference or pointer

• use copy free functions

– usage of mutable objects instead of immutable

• use const everywhere possible

– need for frequent re-coding (byte[] -> string -> byte[])

28 PA193 | Secure API, Automata-based programming

PA193 | Secure API, Automata-based programming

Copy-free functions

• API style which minimizes array copy operations

• Frequently used in cryptography

– we take block, process it and put back

– can take place inside original memory array

• int encrypt(byte array[], int startOffset, int length);

– encrypt data from startOffset to startOffset + length;

• Wrong(?) example:

– int encrypt(byte array[], int length, byte outArray[], int*
pOutLength);

– note: C/C++ can still use pointers arithmetic

– note: Java can’t (we need to create new array)

29

Sensitive data (keys) in memory

• What is the difference?

• Try to limit copies of sensitive data in memory

– potential unintended disclosure (memory, swap…)

• Pass by value requires more memory erases

– What about Java’s pass by value of reference?

30 PA193 | Secure API, Automata-based programming

int set_key(Key_t key, pin_t seal_pin);
vs.

int set_key(Key_t* key, pin_t* seal_pin);

General principles – static factory

• Use static factory instead of class constructor

– e.g., javacardx.crypto & class::getInstance()

– e.g., javacardx.crypto & class::buildKey()

31 PA193 | Secure API, Automata-based programming

import javacardx.crypto.*;

// CREATE DES KEY OBJECT

m_desKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES,

 KeyBuilder.LENGTH_DES, false);

// CREATE OBJECTS FOR CBC CIPHERING

m_encryptCipher = Cipher.getInstance(Cipher.ALG_DES_CBC_NOPAD, false);

m_decryptCipher = Cipher.getInstance(Cipher.ALG_DES_CBC_NOPAD, false);

// CREATE RANDOM DATA GENERATOR

m_secureRandom = RandomData.getInstance(RandomData.ALG_SECURE_RANDOM);

// CREATE MD5 ENGINE

m_md5 = MessageDigest.getInstance(MessageDigest.ALG_MD5, false);

General principles – static factory

• Advantages of static factory over constructors

– provides named "constructors“ (getInstance, buildKey)

– can return null, if appropriate

– can return an instance of a derived class, if appropriate

– reduce verbosity when instantiating variables of

generic/template types (no need to write type twice)

– allows immutable classes to use preconstructed

instances or to cache instances (speed)

– http://www.informit.com/articles/article.aspx?p=1216151

32 PA193 | Secure API, Automata-based programming

Map<String, list<String>>* m = new HashMap<String, List<String>>();
vs.

Map<String, list<String>> m = HashMap.newInstance();

http://www.informit.com/articles/article.aspx?p=1216151

General principles – behave as expected

• Principle of last astonishment

– user should not be surprised of API behavior

• Be careful with overloading

– use different names for methods when having same number of

arguments

– same behavior for same (position of) arguments

• Fail fast – report error as soon as possible

– failure in compile time is better

– during runtime, first method invocation with bad state should fail

• Provide methods to obtain data elements from results

provided originally in strings

– do not force programmer to parse strings

33 PA193 | Secure API, Automata-based programming

Example: Avoid long parameter lists

35 PA193 | Secure API, Automata-based programming

WIN32 API
HWND WINAPI CreateWindow(
 _In_opt_ LPCTSTR lpClassName,
 _In_opt_ LPCTSTR lpWindowName,
 In DWORD dwStyle,
 In int x,
 In int y,
 In int nWidth,
 In int nHeight,
 _In_opt_ HWND hWndParent,
 _In_opt_ HMENU hMenu,
 _In_opt_ HINSTANCE hInstance,
 _In_opt_ LPVOID lpParam
);

QT API
QWidget window;
window.setWindowTitle("Window title");
window.resize(320, 240);
...
window.show();

Which one you like more?

Why?

General principles - parameters

• Avoid long parameter lists

– three or fewer parameters ideal (including default values)

• mistake in filling arguments might be missed in compile

• When more parameters are required:

– break method into more methods

– or encapsulate multiple arguments into single class/struct

• Use consistent parameter ordering (src vs. desc)

36 PA193 | Secure API, Automata-based programming

#include <string.h>
char *strcpy (char* dest, char* src);
void bcopy (void* src, void* dst, int n);

Security API

• “A security API allows untrusted code to access sensitive

resources in a secure way.” Graham Steel

• Interface between different levels of trust

• Security API is designed to enforce a policy

– certain predefined security properties should always hold

– e.g., private key cannot be used before user is authenticated

• Security API is not equal to security protocols

– but closely related

– security protocol == short program how principals communicate

– security API == set of short programs called in any order

• http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

• http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf

37 PA193 | Secure API, Automata-based programming

http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf

Security API attack

• API attack is sequence of commands (function

calls) which breach security policy of an interface

• “Pure” API attacks – only sequence of commands

– e.g., key value is directly revealed

• “Augmented” API attacks – additional brute-force

computations required

– e.g., 128bits key value is exported under 56bits key

38 PA193 | Secure API, Automata-based programming

Security API – problems in time

• Interfaces get richer and more complex over time

– pressure from customers to support more options

– economic pressures towards unsafe defaults

– failures tend to arise from complexity, KISS!!!

– hard to design secure API, even harder to keep it secure

• Leaks when trusted component talks to less trusted

– interface often leaks more information than anticipated by

designer of trusted component

39 PA193 | Secure API, Automata-based programming

Security API - typical problems

• Unexpected command sequences

– methods called in different order than expected

– use method call fuzzer to test

– use automata-based programing to verify proper state

• Unknown commands

– invalid values as method arguments

– always make extensive input verification

– use fuzzer to test

40 PA193 | Secure API, Automata-based programming

Security API - typical problems

• Commands in a wrong device mode

– sensitive operation (e.g., Sign()) called without previous

authentication

– use methods order fuzzing to test

– use automata-based programing to ensure proper state

• Existence of undocumented API

– debugging API not removed (unintentionally)

– security by obscurity (be aware of reverse engineering)

– example: Crysalis Luna module (key extraction)

• http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf

44 PA193 | Secure API, Automata-based programming

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf

Security API - typical problems

• Multiple different APIs to single component/storage

– contracts within one set of API may be broken by second set

– possible interleaving of function calls from different APIs

– Example: Ultimaco HSM APIs

• Microsoft world: CNG, CSP, EKMI

• JCE, PKCS#11, OpenSSL

• administration API's: IT monitoring SNMP

– Example: IBM 4758 HSM APIs

• IBM CCA, VISA EMV, PKCS#11...

• IBM proprietary

• Attacks already used in the wild for large scale attacks

– http://www.wired.com/threatlevel/2009/04/pins/

45 PA193 | Secure API, Automata-based programming

http://www.wired.com/threatlevel/2009/04/pins/

Security API: best practices

• Use API keys, not Username/Password

– e.g., OAuth instead of Basic Auth

• Don’t use sessions (if possible)

– build API as RESTful services

– “Each request from any client contains all of the

information necessary to service the request, and any

session state is held in the client.” REST Wikipedia

– check client input extensively

• Supply methods for secure erase of sensitive data

46 PA193 | Secure API, Automata-based programming

Security API: best practices

• Always use TLS when secure channel is required

– or other suitable secure channel, don’t build one yourself

• Look at mature APIs for best practice examples

– Foursquare, Twitter, and Facebook...

• Don’t use weak cryptographic algorithms

– MD5, RC4... Old NSA saying: “Cryptanalysis always gets

better. It never gets worse.”

• Don’t hardcode particular algorithm into API

– and be prepared for change (e.g., BlockCipher interface

instead of AES)

47 PA193 | Secure API, Automata-based programming

Formal verification of security API

• Harder than security protocol analysis

– security API typically consist of tens of functions called in any order

– security protocol only few messages executed in predefined

sequence

• Initially applied only to small APIs, now better

• Many interesting practical results

– real attacks against PKCS#11 devices

– Ubikey token API problem

– PKCS#11 RSA’s token problem found

• Proofs of security within given model may be given

• http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

48 PA193 | Secure API, Automata-based programming

http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

Formal verification of APIs

• Tookan tool

– http://secgroup.ext.dsi.unive.it/projects/security-apis/tookan/

– probe PKCS#11 token with multiple function calls

– automatically create formal model for token

– run model checker and find attack

– try to execute attack against real token

• No single “best” tool (Avispa, Proverif…)

• A Generic API for Key Management

– http://www.lsv.ens-cachan.fr/~steel/genericapi/

• International Workshop on Analysis of Security APIs

– http://www.lsv.ens-cachan.fr/~steel/asa/

 PA193 | Secure API, Automata-based programming 49

http://secgroup.ext.dsi.unive.it/projects/security-apis/tookan/
http://secgroup.ext.dsi.unive.it/projects/security-apis/tookan/
http://secgroup.ext.dsi.unive.it/projects/security-apis/tookan/
http://www.lsv.ens-cachan.fr/~steel/genericapi/
http://www.lsv.ens-cachan.fr/~steel/genericapi/
http://www.lsv.ens-cachan.fr/~steel/genericapi/
http://www.lsv.ens-cachan.fr/~steel/asa/
http://www.lsv.ens-cachan.fr/~steel/asa/
http://www.lsv.ens-cachan.fr/~steel/asa/

CODE ANNOTATIONS

53 PA193 | Annotations, dynamic analysis, fuzzing

Motivation for making annotations

• More semantics of code available for checker

– Capture otherwise missed bugs

• More explicit documentation of code/API

– Ideally automatically testable

– Problems captured in compile time

• Compliancy requirements

– Driver signature by Microsoft, a must for 64b Windows

• …

54 PA193 | Secure API, Automata-based programming

Microsoft SDL C/C++ static checker

• Problems not found by PREfast checker by default

• Achievable via source-code annotation language (SAL)

– check of return value

– argument must be not NULL

– string must be terminated

– length of data read / written into buffer

• Additional requirements are added to declaration of

function, structure... via (non-standard) keywords

• Validity of such requirements are checked by PREfast

– in pre-state (before fnc call) & in post-state (after fnc call)

55 PA193 | Annotations, dynamic analysis, fuzzing

SAL – basic terms

• Element is valid if contains explicitly assigned value

– Item of allocated array with unassigned value is invalid

• Valid in pre-condition (before function is called)

– Annotation typically starts with In_xxx

• Valid in post-condition (when function ends)

– Annotation typically starts with Out_xxx

• Number of specified bytes vs. items

– Default is number of items, bytes if _bytes_ added

– Number of elements valid

57 PA193 | Annotations, dynamic analysis, fuzzing

SAL functions basics

• Optional version of arguments

– argument might be NULL

– _In_opt, _Out_opt...

– function must perform check before use

58 PA193 | Annotations, dynamic analysis, fuzzing

SAL functions basics II.

• Pointer type annotations

• _Outptr_

– should not be NULL

– should be initialized

• _Outptr_opt_

– can be NULL, must be checked

59 PA193 | Annotations, dynamic analysis, fuzzing

• PREfast analysis

60 PA193 | Annotations, dynamic analysis, fuzzing

void salDemo(_In_ int* pInArray, _Outptr_ int** ppArray) {

}

int main(int argc, char* argv[]) {

 int* pArray = NULL;

 int* pArray2 = NULL;

 if (strcmp(argv[1], "alloc") == 0) {pArray = new int[5];}

 salDemo(pArray, &pArray2);

 return 0;

}

test.cpp(34): warning : C6101: Returning uninitialized memory '*ppArray'. A successful
 path through the function does not set the named _Out_ parameter.
test.cpp(49): warning : C6387: 'pArray' could be '0': this does not adhere to the
 specification for the function 'salDemo'.
test.cpp(49): warning : C6001: Using uninitialized memory '*pArray'.

SAL annotations – much more

• Annotations of functions

– http://msdn.microsoft.com/en-us/library/hh916382.aspx

• Structs and classes can be also annotated

– http://msdn.microsoft.com/en-us/library/jj159528.aspx

• Locking behavior for concurrency can be annotated

– http://msdn.microsoft.com/en-us/library/hh916381.aspx

• Whole function can be annotated

– http://msdn.microsoft.com/en-us/library/jj159529.aspx

– _Must_inspect_result_

• Best practices

– http://msdn.microsoft.com/en-us/library/jj159525.aspx

 61 PA193 | Annotations, dynamic analysis, fuzzing

http://msdn.microsoft.com/en-us/library/hh916382.aspx
http://msdn.microsoft.com/en-us/library/hh916382.aspx
http://msdn.microsoft.com/en-us/library/hh916382.aspx
http://msdn.microsoft.com/en-us/library/jj159528.aspx
http://msdn.microsoft.com/en-us/library/jj159528.aspx
http://msdn.microsoft.com/en-us/library/jj159528.aspx
http://msdn.microsoft.com/en-us/library/hh916381.aspx
http://msdn.microsoft.com/en-us/library/hh916381.aspx
http://msdn.microsoft.com/en-us/library/hh916381.aspx
http://msdn.microsoft.com/en-us/library/jj159529.aspx
http://msdn.microsoft.com/en-us/library/jj159529.aspx
http://msdn.microsoft.com/en-us/library/jj159529.aspx
http://msdn.microsoft.com/en-us/library/jj159525.aspx
http://msdn.microsoft.com/en-us/library/jj159525.aspx
http://msdn.microsoft.com/en-us/library/jj159525.aspx

SAL – examples (in and out buffer)

62 PA193 | Annotations, dynamic analysis, fuzzing

// read from buffer with size equal to length
int readData(void *buffer, int length);
int readData(_In_reads_(length) void *buffer, int length);

// writes specified amount (length) of data into buffer
int fillData(void *buffer, int *length);
int fillData(_Out_writes_all_(length) void *buffer, const int length);

// writes into buffer maxLength at max, but possibly less and modifies also length argument
int fillData(void *buffer, const int maxLength, int *length);
// Check if no more then maxLength and *length is written, also check range of length
int fillData(__Out_writes_to_(maxLength, *length) void *buffer,
 const int maxLength, _Out_range_(0, maxLength-1) int *length);

// read AND write from buffer
int readWriteData(void *buffer, int length);
int readWriteData(_Inout_updates_(length) void *buffer, int length);

SAL – examples (pointers, strings)

63 PA193 | Annotations, dynamic analysis, fuzzing

// pass argument by value foo pointer
int getInfo(struct thing *thingPtr);
// value is used as input and output => _Inout_
int getInfo(_Inout_ struct thing *thingPtr);

// pass C null-terminated strings
int writeString(const char *string);
// must be null terminated string > _In_z_
int writeString(_In_z_ const char *string);

Annotations for GCC/LLVM

• Deputy

– Not active any more , last update 2006?

– http://www.stanford.edu/class/cs295/asgns/asgn5/www/

• Clang Static Analyzer

– http://clang-analyzer.llvm.org/annotations.html

– Only few annotations

66 PA193 | Annotations, dynamic analysis, fuzzing

http://www.stanford.edu/class/cs295/asgns/asgn5/www/
http://clang-analyzer.llvm.org/annotations.html
http://clang-analyzer.llvm.org/annotations.html
http://clang-analyzer.llvm.org/annotations.html

Splint (is simple to use?)

• SAL version

• Splint version

67 PA193 | Annotations, dynamic analysis, fuzzing

void strcpy(_Out_z char *s1, _In_z const char *s2);

void /*@alt char * @*/ strcpy(
 /*@unique@*/ /*@out@*/ /*@returned@*/ char *s1, char *s2)
 /*@modifies *s1@*/ /*@requires maxSet(s1) >= maxRead(s2) @*/
 /*@ensures maxRead(s1) == maxRead(s2) @*/;

AUTOMATA-BASED

PROGRAMMING

68 PA193 | Secure API, Automata-based programming

Automata-based style program

• Program (or its part) is though of as a model of finite state

machine (FSM)

• Basic principles

– Automata state (explicit designation of FSM state)

– Automata step (transition between FSM states)

– Explicit state transition table (not all transitions are allowed)

• Practical implementation

– imperative implementation (switch over states)

– object-oriented implementation (encapsulates complexity)

• https://en.wikipedia.org/wiki/Automata-based_programming

69 PA193 | Secure API, Automata-based programming

https://en.wikipedia.org/wiki/Automata-based_programming
https://en.wikipedia.org/wiki/Automata-based_programming
https://en.wikipedia.org/wiki/Automata-based_programming

Example: SimpleSign applet

• Simple smart card applet for digital signature

– Operation 1: user must verify UserPIN before private key

usage for signature is allowed

– Operation 2: unblock of user pin allowed only after

successful AdminPIN verification

• Imperative solution:

– sensitive operation (Sign()) is wrapped into condition

testing successful PIN verification

– more conditions may be required (PIN and < 5 signatures)

– same signature operation may be called from different

contexts (SignHash(), ComputeHashAndSign())

72 PA193 | Secure API, Automata-based programming

SimpleSign –imperative solution

73 PA193 | Secure API, Automata-based programming

void SignData(APDU apdu) {
 // ...
 // INIT WITH PRIVATE KEY
 if (m_userPIN.isValidated()) {
 // INIT WITH PRIVATE KEY
 m_sign.init(m_privateKey, Signature.MODE_SIGN);

 // SIGN INCOMING BUFFER
 signLen = m_sign.sign(apdubuf, ISO7816.OFFSET_CDATA,
 (byte) dataLen, m_ramArray, (byte) 0);

 // ... SEND OUTGOING BUFFER
 }
 else ISOException.throwIt(SW_SECURITY_STATUS_NOT_SATISFIED);

 // ...
}

Test of required condition

Execution of sensitive operation

Example: states for smart card applet

74 PA193 | Secure API, Automata-based programming

digraph StateModel {
rankdir=LR;
size="6,6";
node [shape =ellipse color=green, style=filled];
{ rank=same; "STATE_UPLOADED";"STATE_INSTALLED";}
"STATE_INSTALLED";
"STATE_UPLOADED";
"STATE_UPLOADED" -> "STATE_INSTALLED" [label="install()"];
{ rank=same; "STATE_SELECTED";}
"STATE_SELECTED";
{ rank=same;"STATE_USER_AUTH";"STATE_ADMIN_AUTH";}
"STATE_USER_AUTH" ;
"STATE_ADMIN_AUTH" ;

"STATE_INSTALLED" -> "STATE_SELECTED" [label="select()" color="black" fontcolor="black"];
"STATE_SELECTED" -> "STATE_USER_AUTH" [label="VerifyUserPIN()" color="black" fontcolor="black"];
"STATE_SELECTED" -> "STATE_ADMIN_AUTH" [label="VerifyAdminPIN()" color="black" fontcolor="black"];
...

SimpleSign – automata-based solution

1. Mental model .dot format (human readable)

– Graphviz visualization (visual inspection)

– source code generated for state check and transition

check

– input for formal verification (state reachability)

2. Easy to extend by new states

– source code is generated again

3. More robust against programming mistakes and

omissions

75 PA193 | Secure API, Automata-based programming

Is transition allowed between given states?

• E.g., is allowed to change state directly from

STATE_INITIALIZED to STATE_ADMIN_AUTH?

76 PA193 | Secure API, Automata-based programming

Is function call allowed in present state?

• E.g., do not allow to use private key before UserPIN

was verified

77 PA193 | Secure API, Automata-based programming

private void checkAllowedFunction(int requestedFunction) {

 switch (requestedFunction) {

 case FUNCTION_VerifyUserPIN:

 if (m_currentState == STATE_SELECTED) break;

 _OperationException(EXCEPTION_FUNCTIONEXECUTION_DENIED);

 case FUNCTION_SignData:

 if (m_currentState == STATE_USER_AUTH) break;

 _OperationException(EXCEPTION_FUNCTIONEXECUTION_DENIED);

...
Sign data only when in

STATE_USER_AUTH

How to react on incorrect state transition

• Depends on particular application

– create error log entry

– throw exception

– terminate process

– ...

• Error message should not reveal too much

– side-channel attack based on error content

78 PA193 | Secure API, Automata-based programming

SimpleSign – additional functionality

• New functionality is now required:

– signature allowed also after verification of AdminPIN

• Changes required in imperative solution:

– add additional condition before every Sign()

– when called from multiple places, developer may forgot to include

conditions everywhere

– not easy to realize, what conditions are required from existing code

• Changes required in automata-based solution:

– add new state transition (STATE_ADMIN_AUTH <-> SignData())

– generate new transition tables etc.

79 PA193 | Secure API, Automata-based programming

SUMMARY

80 PA193 | Secure API, Automata-based programming

Summary

• Designing good API is hard

– follow best practices, learn from well-established APIs

• Designing security API is even harder

• Automata-based programming

– make more robust state and transition validation

– good to combine with visualization and automatic code

generation

81 PA193 | Secure API, Automata-based programming

Questions

