
PA193 - Secure coding

principles and practices

Protecting integrity of modules and external

components

Petr Švenda svenda@fi.muni.cz

Overview

• Lecture:

– dynamic libraries, forging, protection

– code signing

– temporary files

– protections in whitebox attacker model

• Labs

– security for temporary files

2 PA193 | Integrity of modules

PROBLEM

3 PA193 | Integrity of modules

4 PA193 | Integrity of modules

Application

binary

Local I/O

Remote I/O

Running

application

Temporary files

Configurations

(registry, files)

Dynamic

libraries

Secure

element

Server

application

DYNAMIC LIBRARIES

5 PA193 | Integrity of modules

PA193 | Integrity of modules

Dynamic library usage (Windows)

• Static linking

– library.lib added to dependencies

• Run-time dynamic linking

– controllable run-time search for dynamic library

– developer can control and respond on (un)available lib

– LoadLibrary(path) & FreeLibrary(hLib)

• Run-time search for specific function

– GetProcAddress(hLib, “function_name”)

– cast to target function prototype (later)

6

Default order of directory search for DLL

1. The directory from which the application loaded

– “application directory”

2. The system directory

3. The 16-bit system directory

4. The Windows directory

5. The current directory

6. The directories that are listed in the PATH

environment variable

• Safe DLL search mode place current directory to 5.

7 PA193 | Integrity of modules

DLL preloading attack

• Called DLL preloading or binary planting attack

1. Attacker obtains write access to one directory in

search list

2. Attacker places malicious DLL here

3. If application will not find DLL in directories

searched before, attacker’s DLL gets loaded

4. Malicious code is executed with application

privileges

8 PA193 | Integrity of modules

How to execute man-in-the-middle for dll

• Application wants to load dynamic library

– according to specified name, e.g., winscard.dll

– e.g. via LoadLibrary(“winscard.dll”) call

• Create dynamic library (“stub”) with the same name and

the same set of exported functions

• Move stub DLL into directory where application looks first

for requested DLL

– stub is loaded instead of original

– application will call stub function instead

• When given function from stub is called, pass input

arguments to the original DLL and return response

– or modify, log, delay, block...

9 PA193 | Integrity of modules

Example: APDUPlay

• Dynamic library for interception and manipulation of

communication with smart cards

– winscard.dll, APDU-based communication

– http://www.fi.muni.cz/~xsvenda/apduinspect.html

• What you can achieve:

– log input/output APDU commands (including keys, PINs...)

– manipulate APDUs content according to predefined rules

• e.g., return OK even when verification fails

• e.g., simulate presence of reader / smart card

– reverse engineer protocol used based on communication

– redirect communication to other computer via socket

10 PA193 | Integrity of modules

http://www.fi.muni.cz/~xsvenda/apduinspect.html

Let’s write own winscard.dll (PC/SC)

PA193 | Integrity of modules

User application

winscard.dll (stub)

original.dll

[begin]

SCardTransmit (handle 0xEA010001)# apduCounter:0#

totalBytesINCounter:1#

transmitted:00 a4 04 00 0a a0 00 00 00 28 80 10 30 01 ff

responseTime:31#

SCardTransmit result:0x0#

received:6a 81

SCardTransmit (handle 0xEA010001)# apduCounter:1#

totalBytesINCounter:16#

…

based on ApduView utility (by Fernandes)

http://www.fi.muni.cz/~xsvenda/apduinspect.html

11

winscard.dll

How to load proper library?

1. Use fully qualified path to load library (LoadLibrary)

2. Dynamic-Link Library Redirection

– https://tinyurl.com/chy5wum

– redirection file is created in application directory

– App_name.local (e.g., explorer.exe explorer.exe.local)

• (content of file is ignored)

– application directory is searched first for the target DLL

– good practice to install application DLLs in its directory

• will not overwrite other versions of same DLL

– (will not work if application has manifest)

13 PA193 | Integrity of modules

https://tinyurl.com/chy5wum

How to load proper library? (2)

3. Application manifest

– XML file with various application configurations

– including versions and hash (SHA-1) of required DLLs

– when required DLL is loaded, hash is checked

– https://tinyurl.com/b2dz8u9

14 PA193 | Integrity of modules

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

...

 <file name="bar.dll" hash="ac72753e5bb20446d88a48c8f0aaae769a962338" hashalg="SHA1"/>

 <file name="foo.dll" hash="a7312a1f6cfb46433001e0540458de60adcd5ec5" hashalg="SHA1">

...

https://tinyurl.com/b2dz8u9

PA193 | Integrity of modules

Security implications of dynamic libraries

• Library can be forged and exchanged

• Library-in-the-middle attack easy

– data flow logging

– input/output manipulation

• Library outputs can be less checked then user inputs

– feeling that library is my “internal” stuff and should play by „my“

rules

• Library function call can be behind logical access controls

15

References

• Dynamic-Link Library Security

– http://msdn.microsoft.com/en-

us/library/windows/desktop/ff919712%28v=vs.85%29.aspx

• Assembly manifests

– http://msdn.microsoft.com/en-

us/library/aa374219%28v=vs.85%29.aspx

• Assembly signing example

– http://msdn.microsoft.com/en-

us/library/aa374228%28v=vs.85%29.aspx

16 PA193 | Integrity of modules

http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374219(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374219(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374219(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374228(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374228(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa374228(v=vs.85).aspx

CODE SIGNING

17 PA193 | Integrity of modules

PA193 | Integrity of modules

Code authenticity

• Why to authenticate binary/source codes?

– random transmission errors solved by transport layer (CRC)

– intentional modification on remote code repository

– intentional modification during transport (MITM)

– intentional modification locally (malware in user space)

– NSA Bullrun program...

• Strong authentication often required implicitly

– relatively restricted platforms like iOS / Android...

– kernel drivers (no unsigned kernel driver from Vista 64bit)

– official software repositories…

18

Possibilities for code signature

1. Non-keyed hash function sign = H(your_package)

– everyone can compute H(modified_package)

– where to get “correct” hash value? (usually same webpage)

– often MD5 algorithm (known collisions, insecure)

– often need for manual verification (lazy users)

2. Authentication based on symmetric cryptography

– keyed MAC, sign = HMAC(key, your_package)

– not suitable for one to many distribution (shared key)

3. Authentication based on asymmetric cryptography

– digital signatures of package sign = RSA(private_key, your_package)

– everybody can Verify(public_key, sign)

– most suitable, but may require PKI (trust to public key is critical)

19 PA193 | Integrity of modules

Code signing (GPG/PGP)

• PGP/GPG can be used for code signing

– same process as message signature

– signature is usually detached into separate file (*.sig)

• Trust to signing key is needed

– public key should be obtained from trusted source

– but usually only publisher website or keyserver

• Can be used to sign packages (e.g., Debian RPM)

– http://fedoranews.org/tchung/gpg/

20 PA193 | Integrity of modules

gpg --output app.sig --detach-sig app

gpg --verify app.sig app

http://fedoranews.org/tchung/gpg/

Various code signing managers

• Java certificates (also Android)

– java-based applications and applets (.jar)

• Microsoft Authenticode

– Active-X controls, plug-ins, execs (.cab, .cat, .ctl, .ocx, .exe, .dll)

• Adobe Air certificate

– Adobe Ajax and flex files (.air and .airi)

• Microsoft Office and VBA certificate

– Microsoft Office macros and Visual Basic applications

• Apple developer program

– applications for iOS platform

• Difference: local sign vs. additional check on server

21 PA193 | Integrity of modules

Code signing (Microsoft’s Authenticode)

1. Publisher obtains Code Signing Digital ID

– X.509 certificate with public key signed by trusted authority

– authority’s certificate imported in Trusted Publishers

2. Publisher creates code (application)

3. Publisher signs code with its private key

4. Application is distributed along with signature(s)

5. Application signature is verified, user is notified

– invalid signature of application confirmation from user

– invalid signature of driver no installation

– (problem with legacy apps, non-compliant developers)

• (RSA 2048bit with SHA-1)

22 PA193 | Integrity of modules

23 PA193 | Integrity of modules

Microsoft WHQL

• Windows Hardware Quality Labs (WHQL)

• Intended for kernel-mode binaries (drivers, dll)

• WHQL-certified binaries can be distributed through

the Windows Update program

• Signature stored in catalog file (*.cat)

• Practical Windows Code and Driver Signing

– http://www.davidegrayson.com/signing/

24 PA193 | Integrity of modules

http://www.davidegrayson.com/signing/

Microsoft Authenticode – selfsign (testing)

• Process of creating Authenticode selfsign certificate

– used for testing purposes

– your certificate imported as Trusted Publisher

– signing of exe, dll, scripts

• http://msdn.microsoft.com/en-

us/library/office/aa140234%28v=office.10%29.aspx

• Why it will not work for other computers?

25 PA193 | Integrity of modules

http://msdn.microsoft.com/en-us/library/office/aa140234(v=office.10).aspx
http://msdn.microsoft.com/en-us/library/office/aa140234(v=office.10).aspx
http://msdn.microsoft.com/en-us/library/office/aa140234(v=office.10).aspx

Signed code == secure code?

• Developer can sign anything

– additional layer of validation of application needed

• Microsoft WHQL, Google Play, Apple App Store...

– but his/her key (and apps) can be revocated

• Trusted authority can be compromised

– Comodo, DigiNotar...

• Signature must be verified correctly

– Android Master key vulnerability

– https://tinyurl.com/kj63ae8, https://tinyurl.com/p5fu3j3

• Signed application can execute unsigned code

– Apple's Nitro JavaScript engine, https://tinyurl.com/6tpvzpq

26 PA193 | Integrity of modules

https://tinyurl.com/kj63ae8
https://tinyurl.com/p5fu3j3
https://tinyurl.com/6tpvzpq

TEMPORARY FILES

27 PA193 | Integrity of modules

Why we use temporary files?

• Temporary files are used only during the program run

– no persistence between runs is typically assumed

• Used to offload (large) data from memory to disk

– too large to fit into memory of the application

• Communication with other process

– transferring data through the file system

28 PA193 | Integrity of modules

Creating temporary files in C/C++

• FILE* tmpfile (void);

– creates new temporary binary file with unique file name and opens

it for update (“wb”)

– file is created in TMP directory according to environment settings

– file is automatically closed at program end (including crash)

• char* tmpnam (char * str);

– return unique file name not used yet (but is not opening file)

– additional call to fopen() is required

– if not specified, file is created in current directory

– Warning: file is not opened in the same time, attacker can open it

and manipulate in between – Race condition

– tmpnam generates a different string each time you call it, up to

TMP_MAX times (defined in stdio.h as 65,535)

29 PA193 | Integrity of modules

#include <stdio.h>

Creating temporary files in C/C++ (2)

• Function alternatives from Secure C library exist

– secure from the perspective of buffer manipulation

– not necessarily against various attacks described later

• errno_t tmpnam_s(char *s, rsize_t maxsize);

– returns unique file name (same format as tmpnam)

• errno_t tmpfile_s(FILE*restrict*restrict streamptr)

– creates new temporary binary file with unique file name and opens

it for update (“wb”)

– NOTE: if program crashes, tmp file might NOT be removed

(difference to tmpfile)

30 PA193 | Integrity of modules

Removing temporary files in C/C++

• _rmtmp()

– removes all temporary files created by tmpfile / tmpfile_s

– NOTE: will leave invalid FILE* handle(s)

• Files created by tmpfile / tmpfile_s

– fclose() will remove the file

– normal program termination will remove the file

– abnormal program termination might not remove files

• Temporary files opened by tmpnam() & fopen()

– not treated by system as temporary files

– developer is responsible for removal

31 PA193 | Integrity of modules

Problem with temporary files - TOCTOU

32 PA193 | Integrity of modules

#include <stdio.h>

int main() {

 const size_t BUFFER_SIZE = 1000;

 char filename[BUFFER_SIZE];

 // Get unique file name

 tmpnam_s(filename, BUFFER_SIZE);

 // Test if no such file exists

 FILE *fp = fopen(filename,"r");

 if(!fp) { // file does not exist

 fp = fopen(filename,"w");

 // use tmp file...

 fclose(fp);

 } else {

 // file exists, go for other name

 fclose(fp);

 }

 return 0;

}

attacker can open filename

during this period (TOCTOU)

Time Of Check

Time Of Use

Problem with temp. files - predictability

33 PA193 | Integrity of modules

#include <stdio.h>

#include <windows.h>

int main(int argc, char* argv[]) {

 const size_t BUFFER_SIZE = 1000;

 const size_t NUM_FILES = 15;

 char buffer[BUFFER_SIZE];

 // Obtain directory for temporary files

 GetTempPath(BUFFER_SIZE, buffer);

 printf("Temporary directory: %s\n", buffer);

 FILE * pFile1[NUM_FILES];

 // Obtain unique file name

 for (size_t i = 0; i < NUM_FILES; i++) {

 tmpnam_s(buffer, BUFFER_SIZE);

 printf("Unique file name: %s\n", buffer);

 fopen_s(&pFile1[i], buffer + 1, "wb");

 }

 return 0;

}

Temporary directory:
C:\Users\petr\AppData\Local\Temp\
Unique file name: \s4sg.
Unique file name: \s4sg.1
Unique file name: \s4sg.2
Unique file name: \s4sg.3
Unique file name: \s4sg.4
Unique file name: \s4sg.5
Unique file name: \s4sg.6
Unique file name: \s4sg.7
Unique file name: \s4sg.8
Unique file name: \s4sg.9
Unique file name: \s4sg.a
Unique file name: \s4sg.b
Unique file name: \s4sg.c
Unique file name: \s4sg.d
Unique file name: \s4sg.e

Problem with temp. files – predictability (2)

34 PA193 | Integrity of modules

#include <stdio.h>

int main(int argc, char* argv[]) {

 const size_t NUM_FILES = 15;

 FILE * pFile2[NUM_FILES];

 // Open temporary files

 for (size_t i = 0; i < NUM_FILES; i++) {

 tmpfile_s(&pFile2[i]);

 }

 // Wait - tmp files can be spotted in tmp directory

 getchar();

 // Remove tmp files (only these opened by tmpfile / tmpfile_s)

 // Handles FILE* inside pFile2 now have invalid value

 _rmtmp();

 return 0;

}

06/11/2013 15:28 0 t3oc
06/11/2013 15:28 0 t3oc.1
06/11/2013 15:28 0 t3oc.2
06/11/2013 15:28 0 t3oc.3
06/11/2013 15:28 0 t3oc.4
06/11/2013 15:28 0 t3oc.5
06/11/2013 15:28 0 t3oc.6
06/11/2013 15:28 0 t3oc.7
06/11/2013 15:28 0 t3oc.8
06/11/2013 15:28 0 t3oc.9
06/11/2013 15:28 0 t3oc.a
06/11/2013 15:28 0 t3oc.b
06/11/2013 15:28 0 t3oc.c
06/11/2013 15:28 0 t3oc.d
06/11/2013 15:28 0 t3oc.e

Problems with creating tmp files (MSVC)

• tmpnam() / tmpnam_s()

– format as sxxx.#

– TOCTOU

• tmpfile() / tmpfile_s()

– unique file name is generated as txxx.# where xxx is digit

or character and # is sequential number or character

– predictability

• Attacker can:

– predict file name, create own file (TOCTOU)

– then capture sensitive & forge malformed data

35 PA193 | Integrity of modules

Temporary files in Java

• File tempFile = File.createTempFile(prefix, suffix);

– Will keep file even when JVM exits

– Longer name then in C/C++ (by default)

• Ask for delete on JVM exit

– tempFile.deleteOnExit();

– But deleted only during “normal” termination

– “Deletion will be attempted only for normal termination of

the virtual machine, as defined by the Java Language

Specification.”

• Similar problems as for C/C++

36 PA193 | Integrity of modules

TEMPORARY FILES –

SECURITY CHECKLIST

37 PA193 | Integrity of modules

Temporary files security checklist

1. Avoid temporary files if possible

2. Don’t use standard C function for temporary files

– mktemp(), tmpnam(), tempname(), tmpfile()...

– predictable names, race conditions

3. Don’t store sensitive information in temp files

– temp files are common attack vector, prevent it

4. Research where are temporary files stored

– no standard function for that in C/C++

– Windows: GetTempPath()

38 PA193 | Integrity of modules

Temporary files security checklist (2)

5. Ensure strong uniqueness and unpredictability for

name of temporary file

– don’t use tmpnam or tmpfile functions (predictable)

– generate long random name internally, open it, check

– use strong random generating function like CAPI’s

CryptGenRandom(), OpenSSL’s RAND_bytes()...

39 PA193 | Integrity of modules

Temporary files security checklist (2)

6. Ensure proper permissions for temporary file

– avoid publically writable directories if possible

– if publically writable directory is used, create subdirectory and set

ACL’s (read and write) only for your application

7. Encrypt log file content with random key

– generate random secret key every time you run your application

– encrypt data before writing into log file (and decrypt when reading)

– when program is abnormally terminated, (encrypted) temporary file

will stay but random key will is lost

– attacker cannot supply older temporary version (different key)

40 PA193 | Integrity of modules

Temporary files security checklist (3)

8. Perform secure cleanup

– overwrite content of temporary file with random data before close

• even when performing log file encryption (key may leak in

memory dump, pagefile etc.)

– leave no temporary files behind

• close temporary files as soon as possible

• call _rmtmp() if standard C functions were use for open

– still possible to leave temporary files during abnormal termination

• utilize own signal handlers

• wrap main into big exception handler and cleanup

41 PA193 | Integrity of modules

Temporary files security checklist (4)

9. Rely on absolute, not on relative paths

– relative paths will change when application current directory

change

– if user provides directory path for temporary files, sanitize it

– use file handles (e.g., FILE*) instead of file path (TOCTOU)

10.Open files exclusively and non-existing only

– C99: fopen(“filename”, “wb”) opens new as well as existing file

– C11: new exclusive create-and-open mode ("…x") for fopen

– POSIX: open() with O_CREAT|O_EXCL

– WIN32 API:CreateFile() with CREATE_NEW

42 PA193 | Integrity of modules

References

• Security Tips for Temporary File Usage in Applications

– http://www.codeproject.com/Articles/15956/Security-Tips-for-

Temporary-File-Usage-in-Applicat

• FIO43-C. Do not create temporary files in shared directories

– https://www.securecoding.cert.org/confluence/display/seccode/FIO43

-C.+Do+not+create+temporary+files+in+shared+directories

• MITRE CWE-377: Insecure temporary files

– http://cwe.mitre.org/data/definitions/377.html

44 PA193 | Integrity of modules

http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
http://www.codeproject.com/Articles/15956/Security-Tips-for-Temporary-File-Usage-in-Applicat
https://www.securecoding.cert.org/confluence/display/seccode/FIO43-C.+Do+not+create+temporary+files+in+shared+directories
https://www.securecoding.cert.org/confluence/display/seccode/FIO43-C.+Do+not+create+temporary+files+in+shared+directories
https://www.securecoding.cert.org/confluence/display/seccode/FIO43-C.+Do+not+create+temporary+files+in+shared+directories
http://cwe.mitre.org/data/definitions/377.html

OBFUSCATION, PROTECTING

SOFTWARE MODULES

45 PA193 | Integrity of modules

Standard vs. whitebox attacker model

46 PA193 | Integrity of modules

Standard AES API (PolarSSL)

47 PA193 | Integrity of modules

/**

 * \brief AES key schedule (encryption)

 *

 * \param ctx AES context to be initialized

 * \param key encryption key

 * \param keysize must be 128, 192 or 256

 *

 * \return 0 if successful, or POLARSSL_ERR_AES_INVALID_KEY_LENGTH

 */

int aes_setkey_enc(aes_context *ctx, const unsigned char *key, unsigned int keysize);

/**

 * \brief AES-ECB block encryption/decryption

 *

 * \param ctx AES context

 * \param mode AES_ENCRYPT or AES_DECRYPT

 * \param input 16-byte input block

 * \param output 16-byte output block

 *

 * \return 0 if successful

 */

int aes_crypt_ecb(aes_context *ctx,

 int mode,

 const unsigned char input[16],

 unsigned char output[16]);

Standard AES - usage

48 PA193 | Integrity of modules

void simpleAES() {

 unsigned char key[32];

 unsigned char buf[16];

 aes_context ctx;

 memset(buf, 1, sizeof(buf));

 memset(&ctx, 0, sizeof(ctx));

 // Set the key

 sprintf((char*)key, "%s", "SecurePassword:nbu123");

 aes_setkey_enc(&ctx, key, 128);

 printf("Input: ");

 for (int i = 0; i < AES_BLOCK_SIZE; i++) printf("%2x", buf[i]);

 printf("\n");

 // Encrypt one block

 aes_crypt_ecb(&ctx, AES_ENCRYPT, buf, buf);

 printf("Output: ");

 for (int i = 0; i < AES_BLOCK_SIZE; i++) printf("%x", buf[i]);

}

OllyDbg – key value is static string

49 PA193 | Integrity of modules

OllyDbg – key is visible in memory

50 PA193 | Integrity of modules

What if AES usage is somehow hidden?

51 PA193 | Integrity of modules

Whitebox attacker model

• The attacker is able to:

– inspect and disassemble binary (static strings, code...)

– observe/modify all executed instructions (OllyDbg...)

– observe/modify used memory (OllyDbg, memory dump...)

• How to still protect value of cryptographic key?

• Who might be white-box attacker?

– Mathematician (for fun)

– Security researcher / Malware analyst (for work)

– DRM cracker (for fun&profit)

– ...

52 PA193 | Integrity of modules

Classical obfuscation and its limits

• Time-limited protection

• Obfuscation is mostly based on obscurity

– add bogus jumps

– reorder related memory blocks

– transform code into equivalent one, but less readable

– pack binary into randomized virtual machine

– ...

• Barak’s (im)possibility result (2001)

– family of functions that will always leak some information

– but practical implementation may exists for others

53 | ESET, Bratislava, 31.5.2013

CEF&CED

Computation with Encrypted Data and Encrypted Function

54 | ESET, Bratislava, 31.5.2013

Scenario

• We’d like to compute function F over data D

– secret algorithm F or sensitive data D (or both)

• Solution with trusted environment

– my trusted PC, trusted server, trusted cloud…

• Problem: can be cloud or client really trusted?

– server hack, DRM, malware...

• Attacker model

– controls execution environment (debugging)

– sees all instructions and data executed

| ESET, Bratislava, 31.5.2013 55

CEF

• Computation with Encrypted Function (CEF)

– A provides function F in form of P(F)

– P can be executed on B’s machine with B’s data D as P(D)

– B will not learn function F during computation

| ESET, Bratislava, 31.5.2013

A B

56

CED

• Computation with Encrypted Data (CED)

– B provides encrypted data D as E(D) to A

– A is able to compute its F as F(E(D)) to produce E(F(D))

– A will not learn D

| ESET, Bratislava, 31.5.2013

A B

57

CED via homomorphism

1. Convert your function into circuit with additions
(xor) and multiplications (and) only

2. Compute addition and/or multiplication “securely”

– an attacker can compute E(D1+D2) = E(D1)+E(D2)

– but will learn neither D1 nor D2

3. Execute whole circuit over encrypted data

• Partial homomorphic scheme

– either addition or multiplication is possible, but not both

• Fully homomorphic scheme

– both addition and multiplication (unlimited)

| ESET, Bratislava, 31.5.2013 58

Partial homomorphic schemes

• Example with RSA (multiplication)

– E(d1).E(d2) = d1
e . d2

e mod m = (d1d2)
e mod m = E(d1d2)

• Example Goldwasser-Micali (addition)

– E(d1).E(d2) = xd1r1
2 . Xd2r2

2 = xd1+d2(r1r2)
2 = E(d1 d2)

• Limited to polynomial and rational functions

• Limited to only one type of operation (mult or add)

– or one type and very limited number of other type

• Slow – based on modular mult or exponentiation

– every operation equivalent to whole RSA operation

| ESET, Bratislava, 31.5.2013 59

Fully homomorphic scheme (FHE)

• Holy grail - idea proposed in 1978 (Rivest et al.)

– both addition and multiplication securely

• But no scheme until 2009 (Gentry)!

– based on lattices over integers

– noisy FHE usable only to few operations

– combined with repair operation

| ESET, Bratislava, 31.5.2013 60

Fully homomorphic scheme - usages

• Outsourced cloud computing and storage (FHE search)

– Private Database Queries

– using Somewhat Homomorphic Encryption

http://researcher.ibm.com/researcher/files/us-shaih/privateQueries.pdf

– protection of the query content

• Secure voting protocols (yes/no + sum)

• Protection of proprietary info - MRI machines

– very expensive algorithm analyzing MR data, HW protected

– central processing restricted due to processing of private patient data

• Read more about current state of FHE

– http://www.americanscientist.org/issues/id.15906,y.2012,no.5,content.true,pa

ge.2,css.print/issue.aspx

 61 | ESET, Bratislava, 31.5.2013

http://researcher.ibm.com/researcher/files/us-shaih/privateQueries.pdf
http://researcher.ibm.com/researcher/files/us-shaih/privateQueries.pdf
http://researcher.ibm.com/researcher/files/us-shaih/privateQueries.pdf
http://www.americanscientist.org/issues/id.15906,y.2012,no.5,content.true,page.2,css.print/issue.aspx
http://www.americanscientist.org/issues/id.15906,y.2012,no.5,content.true,page.2,css.print/issue.aspx

Fully homomorphic scheme - practicality

• Not very practical (yet) (Gentry, 2009)

– 2.7GB key & 2h computation for every repair operation

– repair needed every ~10 multiplication

• FHE-AES implementation (Gentry, 2012)

– standard PC 37 minutes/block (but 256GB RAM)

62 | ESET, Bratislava, 31.5.2013

WHITEBOX CRYPTOGRAPHY

Computation with Encrypted Data and Encrypted Function

63 | ESET, Bratislava, 31.5.2013

White-box attack resistant cryptography

• Problem limited from every cipher to symmetric

cryptography cipher only

– protects used cryptographic key (and data)

• Special implementation fully compatible with

standard AES/DES… 2002 (Chow et al.)

– series of lookups into pre-computed tables

• Implementation of AES which takes only data

– key is already embedded inside

– hard for an attacker to extract embedded key

PA193 | Integrity of modules 64

PA193 | Integrity of modules

Whitebox transform

65

Impractical solution

• Secure, but 2128 x 16B memory storage

PA193 | Integrity of modules

00…00…00

00…00…01

00…01…11

11…11…11

01…11…11

…

…

10…01…11

10…11…01

01…11…11

10…00…10

01…10…00

…

…

2128

Input block Output block = AES(input, keyX)

Precomputed table

u
s
e

d
 a

s
 i
n

d
e

x
 i
n

to
 t
a

b
le

66

2128

WBACR AES – some techniques

• Pre-compute table for all possible inputs

– practical for one 16bits or two 8bits arguments table with

up to 216 rows (~64KB)

– AddRoundKey: data key

• 8bit argument data, key fixed

• Pack several operations together

– AddRoundKey+SubBytes: T[i] = S[i key];

• Protect intermediate values by random bijections

– removed automatically by next lookup

– X = F-1(F(X))

– T[i] = S[F-1(i) key];

PA193 | Integrity of modules 67

Whitebox cryptography lifecycle

• [Secure environment]

1. Generate required key (random, database...)

2. Generate WAES tables (in secure environment)

• [Potential insecure environment]

3. Compile WAES tables into target application

• [Insecure environment (User PC)]

4. Run application and use WAES as usual (with fixed key)

68 PA193 | Integrity of modules

PA193 | Integrity of modules

makeTable()

precompTable

data encrypted data

encrypt(data)

AES key

Environment under control

of an attacker

Environment outside control

of an attacker

69

Resulting implementation

• More difficult to detect that crypto was used

– no fixed constants in the code

– precomputed tables change with every generation

– even two tables for same key are different

– (but can still be found)

• Resistant even when precomputed tables are found

– when debugged, only table lookups are seen

– key value is never manipulated in plaintext

– transformation techniques should provide protection to key

embedded inside tables

70 PA193 | Integrity of modules

WBACR AES - pros

• Performance is practically usable

– implementation size ~800KB (tables)

– speed ~MBs/sec (~6.5MB/s vs. 220MB/s)

• Hard to extract embedded key

– Complexity semi-formally guaranteed

– (if the scheme is secure)

• One can simulate asymmetric cryptography!

– implementation contains only encryption part of AES

– until attacker extracts key, decryption is not possible

PA193 | Integrity of modules 71

WBACR AES - cons

• Implementation can be used as oracle (black box)

– attacker can supply inputs and obtain outputs

– even if she cannot extract the key

– (can be partially solved by I/O encodings)

• Problem of secure input/output

– protected is only AES, not code around

• Key is fixed and cannot be easily changed

• Successful cryptanalysis for several schemes

– several former schemes broken

– new techniques proposed

• Fault induction attacks (2015, Riscure)!

PA193 | Integrity of modules 72

List of proposals and attacks

• (2002) First WB AES implementation by Chow et. al. [Chow02]

– IO bijections, linear mixing bijections, external coding

– broken by BGE cryptanalysis [Bill04]

• algebraic attack, recovering symmetric key by modelling round function by system of

algebraic equations

• (2006) White Box Cryptography: A New Attempt [Bri06]

– attempt to randomize whitebox primitives, perturbation & random equations added, S-boxes are

enc. keys. 4 AES ciphers, major voting for result

– broken by Mulder et. al. [Mul10]

• removes perturbations and random equations, attacking on final round removing

perturbations, structural decomposition. 217 steps

• (2009) A Secure Implementation of White-box AES [Xia09]

– broken by Mulder et. al. [Mul12]

• linear equivalence algorithm used (backward AES-128 compatibility => linear protection has

to be inverted in next round), 232 steps

• (2011) Protecting white-box AES with dual ciphers [Kar11]

– broken by our work [Kli13]

• protection shown to be ineffective

73 PA193 | Integrity of modules

More resources

• Overviews, links

– http://whiteboxcrypto.com/research.php

– https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/dok

u.php?id=public:mobilecrypto

• Crackme challenges

– http://www.phrack.org/issues.html?issue=68&id=8

• Whitebox crypto in DRM

– http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

74 PA193 | Integrity of modules

http://whiteboxcrypto.com/research.php
https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/doku.php?id=public:mobilecrypto
https://minotaur.fi.muni.cz:8443/~xsvenda/docuwiki/doku.php?id=public:mobilecrypto
http://www.phrack.org/issues.html?issue=68&id=8
http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

Whitebox transform IS used in the wild

• Proprietary DRM systems

– details are usually not published

– AES-based functions, keyed hash functions, RSA, ECC...

– interconnection with surrounding code

• Chow at al. (2002) proposal made at Cloakware

– firmware protection solution

• Apple’s FairPlay & Brahms attack

• http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

• ...

 75 PA193 | Integrity of modules

http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

SUMMARY

76 PA193 | Integrity of modules

Summary

• Dynamic libraries can be forged

– make DLL preloding harder (manifest)

– check input from library as untrusted

• Don’t use standard C functions for temporary files

– not use temporary files at all or follow security guidelines

• Try to protect secrets inside binary

– don’t hardcode any secrets

– offload sensitive computation to secure environment

(server, smart card, HSM)

– use whitebox-attacker protection techniques

77 PA193 | Integrity of modules

Questions

