TLS Parser

PA193 - Project
2016



Scope

° TLSv1.0 - TLSv1.2.

* Record protocol + Handshake protocol.
— Client/ServerHello.
— Certificate.
— Client/ServerKeyExchange.
— ServerHelloDone.

* Binary format (see RFC 5246).



Overall Design

* Parser processes input and builds a
HandshakeMessage structure.

* Record layer protocol headers -> Handshake
orotocol headers -> Handshake message.

* Parsed values are printed on standard output.

* For example of usage see README.md.



Overall Design

// This is how the message looks like as
// a whole (record layer + actual message)

typedef struct {
ContentType cType;
ProtocolVersion version;
uintle t fLength;
HandshakeType hsType;
uint32 t mLength;

unsigned char *body; // Contains the rest of the
message

} HandshakeMessage;



Parsing Client Hello

Message Length should be at least 38 Bytes
First 2 Bytes - Version - O0x03 + 0x01,0x02,0x03
4 Bytes time stamp.

28 Random Bytes.

1 Byte Session id length.

Session id - Variable length

2 Bytes Cipher Suite length.

Cipher Suite Variable length - Not Decoded.

1 Bytes - Compression method length
Compressions methods one byte per method - Not decoded.
Extensions - if any - checked.



Parsing Client Hello

typedef struct {
ProtocolVersion version;
Random random;
SessionID sessionlId;
CipherSuiteCollection csCollection;
CompresionMethod compresionMethod;
ulnt8 t hasExtensions;
unsigned char *extensions;

} ClientHello;



Parsing Server Hello

Message Length should be at least 38 Bytes
First 2 Bytes - Version - 0x03 + 0x01,0x02,0x03
4 Bytes time stamp.

28 Random Bytes.

1 Byte Session id length.

Session id - Variable length

2 Bytes Cipher Suite Selected.

1 Bytes - Compression method Selected.
Extensions - if any - checked.



Parsing Server Hello

typedef struct {
ProtocolVersion version;
Random random;
SessionID sessionId;
unsigned char cipherSuitel[2];
ulnt8 t compresionMethod;
uilnt8 t hasExtensions;
unsigned char *extensions;

} ServerHello;



Parsing Key Exchange

e Message length given in 2/3 Bytes.
e The details of the key not decode.

e Structure.
typedef struct {

uint32_ t mLength;

unsigned char * ServerDHParams;
} ServerKeyExchange;
typedef struct {

uintl6é_t pubKeyLength;

unsigned char * pubKey;

} ClientKeyExchange;



Code Testing

* Valid messages for coding were created using
Wireshark and ssldump.

* Messages for the following were created:
— Client Hello.
— Server Hello.
— Client Key Exchange.
— Certificate.
— Server Key Exchange.
— Server Hello Done.



Code Fuzzing

In valid messages was created using RADAMSA,
which is general purpose random fuzzer.

RADAMSA created malformed outputs based on
sample input given.

Code was tested for 10000 sample/random test
cases created by RADAMSA.

The code did not crashed for any of the samples
created by fuzzer.




Distribution of work

Parser architecture / overall processing flow.
— Martin Bajanik.
Server & Client Hello messages parsing.
— Mayank Samadhiya and Milan Patnaik.
Key Exchanges messages parsing.
— Mariami Gonashvili.
Test cases & Code Testing.

— Mayank Samadhiya and Milan Patnaik.
Presentation, consultations and reviews.
— Everyone.



Questions



	Slide 1
	Scope
	Overall Design
	Slide 4
	Parsing Client Hello
	Slide 6
	Parsing Server Hello
	Slide 8
	Slide 9
	Code Testing
	Code Fuzzing
	Distribution of work
	Slide 13

