

 (Δ)

 (Δ)

 (Δ)

PA198 **Augmented Reality Interfaces**

Lecture 11 Collaborative AR Applications & Future

Fotis Liarokapis

5th December 2016

Collaborative AR **Applications**

Collaboration

- Collaboration is working with others to do a task and to achieve shared goals
- It is a recursive process where two or more people or organizations work together to realize shared goals

Collaborative Activities

- Collaboration
 - Business, Entertainment, etc
- Computer Supported Collaborative Work (CSCW)
- Groupware

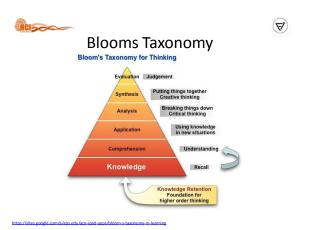
Collaborative Learning

- · Collaborative activities are most often based on four principles:
 - The learner or student is the primary focus of instruction
 - Interaction and "doing" are of primary importance
 - Working in groups is an important mode of learning
 - Structured approaches to developing solutions to real-world problems should be incorporated into learning

Collaboration Tools Taxonomy

Persistent Information

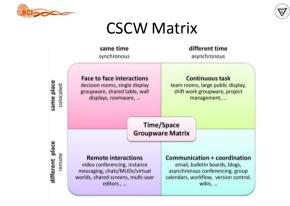
- · Email
- · News group
- · Papers
- Mail
- · Electronic Notebook

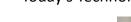


Legal and

Real Time Information Exchange

- · Telephone
- · Video Conference
- · Chat/White board
- Shared authoring & applications
- · Shared VR space
- · Instrument control


Notebook is a chronological record of ideas, data and events.



Computer-Supported Cooperative Work (CSCW)

- The term computer-supported cooperative work (CSCW) was first coined by Irene Greif and Paul M. Cashman in 1984, at a workshop attended by individuals interested in using technology to support people in their work
- · CSCW is a generic term, which combines the understanding of the way people work in groups with the enabling technologies of computer networking, and associated hardware, software, services and techniques

Today's Technology

- · Video Conferencing
 - Lack of spatial cues
 - Limited participants
 - 2D collaboration
- · Collaborative Virtual Environments
 - Separation from real world
 - Reduced conversational cues

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

(A)

 \triangle

Beyond Video Conferencing

- · 2D Interface onto 3D
 - VRML, Web3D
- Projection Screen
 - CAVE, WorkBench
- Volumetric Display
 - Scanning laser
- Virtual Reality
 - Natural spatial cues

 (Δ)

Beyond Virtual Reality

- · Lessons from CSCW
 - Seamless
 - Enhance Reality
- · Immersive Virtual Reality
 - Separates from real world
 - Reduces conversational cues

 (Δ)

Future Collaboration?

· Remote Conferencing

· Face to face Conferencing

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur

AR & Collaboration

- Claim:
 - AR techniques can be used to provide spatial cues that significantly enhance face-to-face and remote collaboration on three-dimensional tasks

Construct3D [Kaufmann 2000]

- Collaborative geometry
- Different learning modes
 - Teacher, student, exam

- Personal interaction panel

Tangible interaction

education tool

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Construct3D Video

https://www.youtube.com/watch?v=tABwBrWL4tc

HCI

- · Seamless Interaction
- · Natural Communication
- Attributes:
 - Virtuality
 - Augmentation
 - Co-operation
 - Independence
 - Individuality

Seamless CSCW

- Seam
 - Spatial, temporal, functional discontinuity
- Types of Seams
 - Functional
 - Between different functional workspaces
 - Cognitive
 - Between different work practices

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Functional Seams

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Cognitive Seams

(A)

HCI

Effect of Seams

- Functional Seams:
 - Loss of Gaze Information
 - Degradation of Non-Verbal Cues
- · Cognitive Seams:
 - Learning Curve Effects
 - User Frustration

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Open Research Questions

- Does seamlessness enhance performance?
- · What AR cues can enhance collaboration?
- How does AR collaboration differ ?
- What technology is required?

 (Δ)

Collaborative AR Interfaces

- Face to Face Collaboration
 - WebSpace, Shared Space, Table Top Demo, Interface
- Comparison, AR Interface Comparison
- Remote Collaboration
 - SharedView, RTAS, Wearable Info Space, WearCom, AR Conferencing, BlockParty
- · Transitional Interfaces
 - MagicBook
- · Hybrid Interfaces
 - AR PRISM, GI2VIS

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Communication Cues

· A wide variety of communication cues used

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Face to Face Collaboration

Communication Cues .

 In computer supported collaboration it is often hard for users to exchange non-verbal communication cues, even when they are colocated

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur

 (Δ)

Differences in Collaboration

 (Δ)

- · Face-to-face collaboration
 - People surround a table
 - It is easy to see each other

- Computer supported collaboration
 - People sit side by side
 - It is hard to see each other

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur

Shared Space - Table Top Demo

- Goal
 - Create compelling collaborative AR interface usable by novices
- · Exhibit content
 - Matching card game
 - Face to face collaboration
 - Physical interaction

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Results from Shared Space

- 2,500 3,000 users
- Observations
 - No problems with the interface
 - Only needed basic instructions
 - Physical objects easy to manipulate
 - Spontaneous collaboration
- User study (157 participants)
 - Users felt they could easily play with other people and interact with objects
- Improvements
 - Reduce lag, improve image quality, better HMD

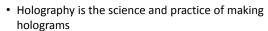
AR Pad

- Handheld AR Display
 - LCD screen
 - SpaceOrb
 - Camera
 - Peripheral awareness

rst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

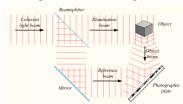
Support for Collaboration

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur


(A)

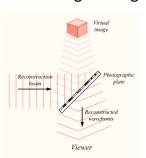
(A)

Holography


- A hologram is a photographic recording of a light
 - Rather than of an image formed by a lens
- It is used to display a fully 3D image of the holographed subject
 - Which is seen without the aid of special glasses or other intermediate optics

Holography.

Holograms


• In its pure form, holography requires the use of laser light for illuminating the subject and for viewing the finished hologram

 (Δ)

Reconstructing a Hologram

Recording a Hologram

- · To make a hologram, the following are required:
 - A suitable object or set of objects
 - A suitable laser beam
 - Part of the laser beam to be directed so that it illuminates the object beam and another part so that it illuminates the recording medium directly (the reference beam)
 - Enabling the reference beam and the light which is scattered from the object onto the recording medium to form an interference pattern
 - A recording medium
 - Converts this interference pattern into an optical element which modifies either the amplitude or the phase of an incident light beam according to the intensity of the interference pattern
 - An environment
 - Provides sufficient mechanical and thermal stability that the interference pattern is stable during the time in which the interference pattern is recorded

CNN Hologram

- · Elections in 2008, USA
- · Holographic technology used
 - First time in TV

CNN Hologram Video

Basic AR Conferencing

· Moves conferencing from the desktop to the workspace

Pilot Study

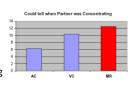
nghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Features

- SGI 02
- Virtual i-O HMD
- Head mounted camera
- Software
 - Live video
 - Shared whiteboard
 - Vision based registration/tracking

- · How does AR conferencing differ?
- - Discussing images
 - 12 pairs of subjects
- Conditions
 - Audio only (AC)
 - Video conferencing (VC)
 - Mixed reality conferencing (MR)

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury


 (\triangle)

 (Δ)

Results

- · Paid more attention to pictures
- · Remote video provided peripheral cues
- In AR condition
 - Difficult to see everything
 - Remote user distracting
 - Communication asymmetries

(A)

(A)

 (Δ)

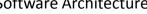
ghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

A Wearable Conferencing Space

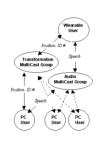
- Mobile video conferencing
- Full size images
- Spatial audio/visual cues
- Interaction with real world
- Dozens of users
- Body-stabilized data

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Initial Prototype

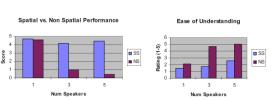

- · Internet Telephony
- Spatial Audio/Visuals
- · See-through HMD
- · Head Tracking
- · Wireless Internet
- · Wearable Computer

rst. M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury


· Static Images

Software Architecture

- · Multicast Groups
- · Position Broadcasting - 10 kb/s per person
- Audio Broadcasting
 - 172 kb/s per person
- · Local sound spatialization
 - DirectSound3D
- · Graphics Interface
 - DirectX/Direct3D


urst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur

Pilot User Study

- Can MR spatial cues aid comprehension?
- - Recognize words in spoken phrases
- Conditions
 - Number of speakers
 - 1,3,5 simultaneous speakers
 - Spatial/Non Spatial Audio
 - Visual/Non visual cues

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

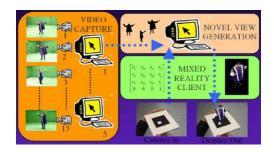
Results

\bigcirc

Advanced AR Conferencing

Superimpose video of remote person over real world

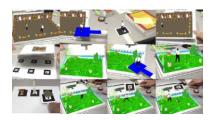
Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury


HCI

System Architecture

(A)

 \triangle



Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

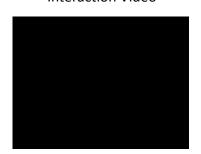
HCIS

Tangible Manipulation

· Using real paddle to move virtual user

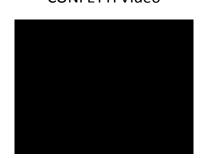
Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbur

AR Remote Conferencing


- Progression
 - 2D to Spatial Cues to 3D
 - Increasing realism (visual/audio cues)

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

AR Videoconferencing for Social Interaction Video



ttps://www.youtube.com/watch?v=uXPYoOR96OQ

HCI

CONFETTI Video

https://www.voutube.com/watch?v=3ei00YS73B

MagicBook Concept

- Goal
 - A collaborative AR interface supporting transitions from reality to virtual reality
- Physical Components
 - Real book
- Display Elements
 - AR and VR content
- Interaction Metaphor
 - Book pages hold virtual scenes

 (Δ)

 (Δ)

inghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

 \triangle

Milgram's Reality-Virtuality Continuum

Multiscale

Collaboration

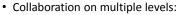
· Milgram defined the term 'Augmented Virtuality' to identify systems which are mostly synthetic with some real world imagery added such as texture mapping video onto virtual objects

MagicBook Transitions

- · Interfaces of the future will need to support transitions along the Reality-Virtuality continuum
- · Augmented Reality is preferred for:
 - Co-located collaboration
- · Immersive Virtual Reality is preferred for:
 - Experiencing world immersively (egocentric)
 - Sharing views
 - Remote collaboration

rst. M. Lecture 6: Collaborative AR Applications. HIT Lab NZ. University of Canterbury

MagicBook Features


- · Seamless transition between Reality and Virtuality
 - Reliance on real decreases as virtual increases
- Supports egocentric and exocentric views
 - User can pick appropriate view
- · Computer becomes invisible
 - Consistent interface metaphors
 - Virtual content seems real
- Supports collaboration

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

MagicBook Collaboration

- Physical Object
- AR Object
- Immersive Virtual Space
- Egocentric + exocentric collaboration
 - Multiple multi-scale users
- · Independent Views
 - Privacy, role division, scalability

MagicBook Video

https://www.voutube.com/watch?v=ek_niOc0xwF

Conclusions

- · Face to face collaboration
 - AR preferred over immersive VR
 - AR facilitates seamless/natural communication
- Remote Collaboration
 - AR spatial cues can enhance communication
 - AR conferencing improves video conferencing
 - Many possible confounding factors
- Future
 - Expect a lot of new AR technologies and apps

 (Δ)

Up to Now

- Many years of development
 - A lot of achievements
- · Moving from desktop to mobile
 - New interfaces are required
 - Research is changing

Future of AR

AR Nowadays

- 30th November 2015 AR went to space!
- New hardware improvements expected
- Many companies
 - ->\$600 Million USD marketAnd growing
 - Thousands of applications (mainly mobile)
- A lot of tools exist but no complete solution

Current Research in AR

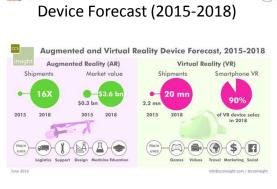
- Social Acceptance
 - Overcome social problems with AR
- Cloud Services
 - Cloud based storage/processing
- AR Authoring Tools
 - Easy content creation for non-experts
- · Collaborative Experiences
 - AR teleconferencing



Investments

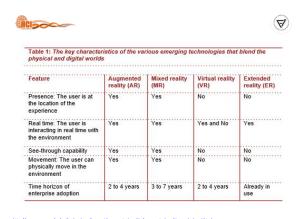

(A)

- Big investments by Google and Apple
 - 29 M Euros Apple (Metaio)
 - 542 M dollars (Magic Leap)
 - Facebook invested in VR



http://zugara.com/cmos-select-augmented-reality-future-trend-marketing

http://zugara.com/augmented-reality-and-virtual-reality-software-market-projections



http://www.i4u.com/2015/06/92427/augmented-and-virtual-reality-market-be-4-billion-3-years

 (Δ)

 \triangle

 \triangle

Areas that Shape the Future of AR

Today's
Augmented
Reality
solutions

Today's
Augmented
Reality
solutions
Interaction

III.

Commercial Systems

- Ngrain
 - http://www.ngrain.com/
 - Training authoring tool
 - Model based AR tracking
 - Focus on industrial applications

(A)

 \triangle

Ngrain Video

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

- ScopeAR
 - http://www.scopear.com/
 - Remote assistance
 - Image based tracking

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

http://www.scopear.com/remotear

13

\bigcirc

(A)

(A)

Key Enabling Technologies

- Augmentation
 - Display Technology
- · Real-time interaction
 - Interaction Technologies
- 3D Registration
 - Tracking Technologies

Displays

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

HCI

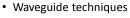
Displays Projections

- · Early years
 - Bulky HMDs
- Nowadays
 - Handheld, lightweight HMDs
- Near Future
 - Projected AR
 - Wide FOV see through
 - Retinal displays
- Far Future
 - Contact lens

Projected AR (1-3 years)

- Use stereo head mounted projectors
 - Rollable retro-reflective sheet
- Wide FOV, shared interaction
 - i.e. CastAR
 (http://castar.com)
 - \$400 USD, available Q4 2015

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.



CastAR Video

 (Δ)

- Wider FOV
- Thin see through
- Socially acceptable
- · Pinlight Displays
 - LCD panel + point light sources
 - 110 degree FOV
 - UNC/Nvidia

Lumus DK40

http://castar.com/

Maimone, A., Lanman, D., et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources, Proc of ACM SIGGRAPH 2014 Emerging Technologies, 20, 2014.

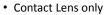
Wide FOV See-Through (3+ years)

 (Δ)

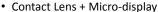
 (Δ)

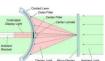
Retinal Displays (5+ years)

- Photons scanned into eye
 - Infinite depth of field
 - Bright outdoor performance
 - Overcome visual defects
 - True 3D stereo with depth modulation
- Microvision (1993-)
 - Head mounted monochrome
- MagicLeap (2013-)
 - Projecting light field into eye



(A)




Contact Lens (15 + years)

- Unobtrusive
- Significant technical challenges
 - · Power, data, resolution

- Wide FOV
- Socially acceptable
- Innovega
 - http://innovega-inc.com/

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

Interaction Projections

- Limited interaction
- Viewpoint manipulation
- Nowadays
 - Screen based, simple gesture
 - Tangible interaction
- Future
 - Natural gesture, Multimodal
 - Intelligent Interfaces
 - Physiological/Sensor based

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

Interaction

- · Freehand gesture input
 - Depth sensors for gesture capture
 - Move beyond simple pointing
 - Rich two handed gestures
 - i.e. Microsoft Research Hand Tracker
 3D hand tracking, 30 fps, single sensor
- Commercial Systems
 - Meta, Hololens, Occulus, Intel, etc

 (Δ)

Smart Glass Hand Interaction

- EnvisageAR + Phonevers
- · RGB-D hand tracking on Android
- Natural gesture input for glasses

Sharp, T., Keskin, C., et al. Accurate, Robust, and Flexible Real-time Hand Tracking, Proc CHI, Vol. 8, 2015

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015

 (Δ)

 (Δ)

 (Δ)

Multimodal Input (5+ years)

- Combine gesture and speech input
 - Gesture good for qualitative input
 - Speech good for quantitative input
 - Support combined commands
 - "Put that there" + pointing
- HIT Lab NZ multimodal input
 - 3D hand tracking, speech
 - Multimodal fusion module
 - Complete tasks faster with MMI, less errors

Tracking

 (Δ)

Intelligent Interfaces (10+ years)

- Move to Implicit Input vs. Explicit
 - Recognize user behaviour
 - Provide adaptive feedback
 - Support scaffolded learning
 - Move beyond check-lists of actions
- Eg AR + Intelligent Tutoring
 - Constraint based ITS + AR
 - PC Assembly
 - 30% faster, 25% better retention

Westerfield, G., Mitrovic, A., & Billinghurst, M. Intelligent Augmented Reality Training for Motherboard Assembly, International Journa Artificial Intelligence in Education, 25(1), 157-172, 2015.

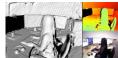
 (Δ)

Tracking Projections

- Location based, marker based,
- Magnetic/mechanical
- Nowadays
 - Image based, hybrid tracking
- Future
 - Ubiquitous
 - Model based
 - Environmental

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015

Model Based Tracking (1-3 yrs)


- · Track from known 3D model
 - Use depth + colour information
 - $\boldsymbol{-}$ Match input to model template
 - Use CAD model of targets
- · Recent innovations
 - Learn models online
 - Tracking from cluttered scene
 - Track from deformable objects

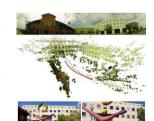
Environmental Tracking (3+ yrs)

- Environment capture
 - Use depth sensors to capture scene & track from model
- InifinitAM
 - Real time scene capture on mobiles (dense or sparse)
 - Dynamic memory swapping allows large environment capture
 - Cross platform, open source library available

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015

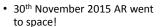
 \bigcirc

(A)



Wide Area AR Tracking (5+ yrs)

 Processed into a point cloud dataset


• Used for AR localisation

Ventura, J., Hollerer, T. Wide-area scene mapping for mobile visual tracking, Proc. of the International Symposium on Mixed and Augmen Reality 2012, (ISMAR), IEEE Computer Society, 3-12, 2012.

Conclusions

- New hardware improvements expected
- Many companies
 - ->\$600 Million USD marketAnd growing
 - Thousands of applications (mainly mobile)
- A lot of tools exist but no complete solution

