

 $\left(\nabla\right)$

PA198 Augmented Reality Interfaces

Lecture 7 Augmented Reality Registration and Calibration

> Fotis Liarokapis liarokap@fi.muni.cz 07th November 2016

Image and Video Registration

Image and Video Registration

- Image and video registration is a deeply studied area from Computer Vision
- It is concerned with the alignment of image sequences with respect to each other – i.e. in a common 3D coordinate system
- Many applications ranging from ubiquitous panorama creations to sophisticated interfaces for interaction with media

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

 $\left(\nabla\right)$

 $\left(\nabla \right)$

Image Registration Common Pipeline

- Suppose we have a sequence of images we want to put in the same coordinate system
	- First, we need to identify features in the images and find correspondences between pairs of images
	- Then, we can estimate the transformation relating the image planes
	- This estimation must be robust to outliers due to mismatched features
	- Finally, we optimize the position of the images taking the whole set into account, for better results

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

Image Registration Common Pipeline .

(a) Feature detection and matching (b) Transformation estimation between two images (c) Image stitching with seam optimization (illustrative only)

- Consider two frames of a video and the task of creating a panorama from them
- While there is much coherence in the two images, the information about how they would fit together is not explicit
- The similarity of a part of the first image with a part of the second image needs to be formalized in a way that a computer can understand it
- This lecture will focus on the detection and matching of two types of features:
	- Regions

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

– Lines

 $\left(\nabla\right)$

HCISOOO

Points and Patches

- Points and patches are the most common features used when trying to find correspondences between images
	- They provide the easiest algorithms
- Two approaches can be used in point matching:
	- Finding features that can be tracked in a set of images • Recommended when the scene does not change much
	- Finds the most prominent features of each image and then tries to match the sets

HCISOO

 $\left(\nabla\right)$

 $\left(\nabla\right)$

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

Points and Patches .

- Four main steps:
	- Feature detection
	- Feature description
	- Feature matching
	- Feature tracking

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

icisco e

Feature Detection

- Detect which parts of the image make the best features
	- To avoid ambiguities

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

- The question that comes up when confronted with the task of selecting a set of features from an image is what makes a good feature?
- The most distinct patches should be selected

Feature Detection .

- Different patches of the image
	- (b) good feature
	- (a), (c) bad features

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

Feature Detection ..

- The simplest way to match two features form different images is to take the sum of squared differences between them
- Can be described as:

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

 $Error(u) = \sum [I_1(x_i + u) - I_0(x_i)]^2$

- where
	- $-I₀$ and $I₁$ are the images being compared – *u* is a displacement vector
	-

$\left(\nabla\right)$

• Next, evaluate how different a patch is from the patches around it using an autocorrelation function

 $\label{eq:autocorrelation} AutoCorrelation(u) = \sum{[I_0(x_i+u) - I_0(x_i)]^2}$

• Note that the displacement vector u here would represent how the second patch is displaced from the original one

Feature Detection

• The matrix A is called the autocorrelation matrix and its properties can be used to decide whether a feature is distinct or not

• How the properties of the autocorrelation matrix are used to determine whether a feature should be used or not depends on the type of detection we do

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

Feature Detection

- Some examples:
	- Shi and Tomasi
	- Förstner-Harris
	- Adaptive non-maximal suppression
	- SIFT

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

Shi-Tomasi Example 1

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

Shi-Tomasi Example 2

 $\left(\nabla\right)$

 $\left(\nabla\right)$

HCISOOC

Feature Description

- Once we have decided which parts of the image would generate good features, we need to match them
- A simple approach would be minimizing the sum of squared differences
- Unfortunately, this would only work if the transformation applied to the patch was a simple translation
- In most cases, the patch will undergo arbitrary affine transformations that will require more sophisticated methods for comparison
	- See next slide

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

$\left(\Delta \right)$

 \triangledown

 \bigtriangledown

- **HCI₂₀₀** Feature Description .
	- MOPS (Multi-Scale Oriented Patches)
	- Used in applications that do not require invariance for transformations – It consists of sampling a lower frequency version of the image around the feature
	- Patch intensities are re-scaled such that their mean is zero and the variance is 1
	- SIFT (Scale-invariant feature transform)
	- Descriptors are formed by computing the gradient in a 16x16 window around the pixel
	- The contribution of each gradient is weighted by a Gaussian centered at the pixel
– The 16x16 window is divided into sixteen 4x4 regions, and represents the gradien – The 16x16 window is divided into sixteen 4x4 regions, and represents the gradient in these regions by adding them to 8 bins
	- The 128 resulting values (the values in each of the 8 bins, in each of the 16 regions, 16x8 = 128) are the SIFT descriptor
- GLOH (Gradient Location-Orientation Histogram)

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

- Extension of SIFT that uses polar bins instead of square ones
- Divides the space into 3 radial bins and 6 angular bins with one additional bin for radius = 0

icisco

Feature Matching

- There are two important steps when matching features
	- Define a matching strategy

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

– Combine data structures and algorithms to efficiently perform the matching evaluations

Feature Matching .

- A simple approach is to immediately reject matches that are further away from each other than a threshold value (using Euclidean distance)
	- In this case, we must of course observe that the threshold is consistent with our expected camera motion, to avoid false positives and false negatives
	- The problem with this strategy is that the threshold depends on each case and is difficult to optimize
- A different approach is to use nearest neighbors in feature space
	- Since some features would not have matches, a threshold approach is still used to avoid extreme false positives

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

<http://www.inf.ufrgs.br/~rgschneider/research/reports/videoRegistration.pdf>

Feature Tracking

- An alternative approach to detecting candidate features in each image and then matching them is to find features in the first image and track them throughout the image sequence
- This approach is most commonly used in videos where the scene is not expected to change much from one frame to the next
- The definition of a good feature to track is the same as before
- If features are being tracked in long image sequences, it is important to consider the problem of big changes in the patches, as well as the loss of patches by occlusion

Feature Tracking .

- To solve this problem, features are matched in different images along the sequence using an affine motion model
	- Instead of a simple translational one
- Since affine matching is more expensive than translational, a first estimation is performed using simpler models
- The resulting tracker is called Kanade-Lucas-Tomasi, or KLT

HCI₂₀₀

KLT AR Example

 $\left(\nabla\right)$

 $\left(\Delta \right)$

HCISOOS

 $\left(\nabla\right)$

AR Registration

<https://www.youtube.com/watch?v=8VbylCRn3iI>

AR Registration

- Registration is the accurate positioning of virtual information into the real environment
- Mis-registration:
	- Breaks the illusion that the two coexist
	- Prevents acceptance of many serious applications

Video Key Method

- Video Keying is a process that is widely used in television, film production and CG. (weather report)
- When using video keying to design AR scenes, one signal contains the foreground image and the other one contains the background image
- The 'keyer' combines the two signal to produce a combined video which is then sent to the display device

Video Key Method .

- Keying can be done using composite or component video signals
	- A composite video signal contains information about color, luminance, and synchronization, thus combining three piece of information into one signal
	- With component video, luminance synchronization are combined, but chroma information is delivered separately

HCISSO

 Δ

 $\left(\nabla\right)$

Video Key Method ..

- Chroma keying involves specifying a desired foreground key color
- Foreground areas containing the keying color are then electronically replaced with the background image
- This results in the background image being replaced with the fore ground image in areas where the background image contains chroma color
- Blue is typically used for chroma keying (Chromakey blue) rarely shows up in human skin tones

Video Key Method ...

- If a video image of the real world is chosen as the foreground image, parts of the scene that should show the computer-generated world are rendered blue
- In contrast, if video of the real world is chosen as the background image, the computer generated environment will be located in the foreground

 $\left(\Delta \right)$

 $\left(\nabla\right)$

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

Chroma Keying AR Example

 $\left(\nabla \right)$

Z-key Method

- The z-key method requires images with both depth information (depth map) as inputs
- The z-key switch compares depth information of two images for each pixel, and connects output to the image which is the nearer one to the camera
- The result of this is that real and virtual objects can occlude each other correctly
- This kind of merging is impossible by the chroma-key method, even if it is accompanied with some other positioning devices such as magnetic or acoustic sensor, since these devices provide only a gross measurement of position

<https://www.youtube.com/watch?v=FOeVKSC2XA8>

 $\left(\nabla\right)$

 $\left(\nabla\right)$

Chroma Key vs Z-Key

Spatial Registration

• Defining Relative Position of Each Elements of a Scene

- **Elements are: User, User's eye, Environment (Table,** Room, Building), Objects, etc.
- Coordinate Systems (Euclidian System)
- Initially: Calibration
- Temporally: 3D/6D Tracking

Sources of Registration Errors

- Static errors
	- Optical distortions
	- Mechanical misalignments
	- Tracker errors
	- Incorrect viewing parameters
- Dynamic errors
	- System delays (largest source of error)
		- 1 ms delay = 1/3 mm registration error

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013

 $\left(\Delta\right)$

 $\left(\Delta\right)$

HCISOO

Reducing Static Errors

 $\left(\Delta\right)$

- Distortion compensation
- Manual adjustments
- View-based or direct measurements
- Camera calibration

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013.

 $\left(\nabla\right)$ Clook Dynamic Errors **Application Loop** $\boxed{\text{Tracking} \begin{array}{|c|c|} \hline x,y,z \\ \hline r,p,y \end{array}}$ Render Draw to Calculate *l*ewpoint Scene **Display** Simulation 500 Hz = 2ms $20 Hz = 50ms$ 30 Hz = 33 ms $60 Hz = 17ms$ • Total Delay = $50 + 2 + 33 + 17 = 102$ ms \blacksquare I ms delay = 1/3 mm = 33mm error

Reducing Dynamic Errors

- Reduce system lag – Faster components/system modules
- Reduce apparent lag
	- Image deflection

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013.

– Image warping

nghurst, M. COSC 426: Augmented Reality, July 26th 2013

aghurst, M. COSC 426: Augmented Reality, July 26th 2013.

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013.

 $\left(\nabla\right)$

$\left(\Delta \right)$ **HCI₂₀c** More on Reducing Dynamic Errors

- Match input streams
	- Delay video of real world to match system lag
- Predictive Tracking – Inertial sensors helpful

Billinghurst, M. COSC 426: Augmented Reality, July 26th 2013.

AR Calibration

 $\left(\nabla\right)$

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

Calibration Requirements

• "Ideally, the calibration methods should be statistically robust, there should be a variety of approaches for different circumstances, and metrology equipment should be sufficiently accurate, convenient to use, and not too expensive"

– (Hollerbach and Wampler, 1996)

Additional Calibration Requirements

• Additional Requirements of Experimental Subsystems:

– Independent

- Not rely on each other
- Subject-specific
	- Account for individual differences
- Avoid residual cues
	- To prevent subjects using them in unanticipated ways

Typical Calibration Components

- Workspace
- Point of view
- Physical objects

 $\left(\nabla\right)$

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

HCISOO

Workspace Calibration

- Markers are aligned with virtual crosses
- Exactly one position in 3 space eliminates "swim"
- do NOT need stereo to calibrate

 $\left(\Delta \right)$

ACISTER

Point of View Calibration

• Subject placing eye calibration bars

Physical Object Calibration

- Markers placed anywhere on object
- Place object in frame so XYZ orientations match

$\left(\nabla\right)$

Measuring ARToolKit's Tracking Error

- In wide area applications, the positioning accuracy of ARToolKit is not very robust
- In distances between 1m and 2.5m the error in the x and y values increases proportionally with the distance from the marker
- Calculate error in distances ranging between 20 cm and 80 cm under normal lighting conditions

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

Camera Calibration with MATLAB

- Computer Vision System Toolbox™ provides an app and functions to perform all essential tasks in the camera calibration workflow, including:
	- Fully automatic detection and location of checkerboard calibration pattern including corner detection with subpixel accuracy
	- Estimation of all intrinsic and extrinsic parameters including axis skew
	- Calculation of radial and tangential lens distortion coefficients
	- Correction of optical distortion
	- Support for single camera and stereo calibration

<https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html?requestedDomain=www.mathworks.com>

 $\left(\nabla\right)$

Camera Calibrator App

• Used to select and filter calibration images, choose the number and type of radial distortion coefficients, view reprojection errors, visualize extrinsic parameters, and export camera

<https://www.mathworks.com/videos/camera-calibration-with-matlab-81233.html?requestedDomain=www.mathworks.com>

icisa

Measuring ARToolKit's Tracking Error .

- The optimal area, which contains the least error, is the one that is perpendicular to the marker card
- A rigid path is set so that the camera can not loose its direction while moving backwards

 Δ

• Numerous measurements of the location of the web camera in a local co-ordinate system

 $\left(\Delta \right)$ Measuring ARToolKit's Tracking Error ..

• Error is proportional to the distance

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

Measuring ARToolKit's Tracking Error …

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics, School of Science and Technology, University of Sussex

• Camera facing the marker at variable angle (yaw) having the other two (pitch, roll) stable

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

• Differences in the error produced from the experiments compared with the actual values

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

 $\left(\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla\!\!\!\!\nabla$

 $\left(\nabla\right)$

Calculating Camera Parameters

- ARToolKit provides two software tools called calib_dist and calib_param that can be used to calculate these camera properties
	- calib_dist is used to measure the lens distortion and the image centre point
	- calib_param is used to compute the focal length of the camera

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics,School of Science and Technology, University of Sussex,

$\left(\nabla\right)$ **HCISOC** ARToolKit's Calibration Method .

• In calib dist program, an image of a pattern 6x4 dots spaced equally apart is used

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics, School of Science and Technology, University of Sussex

 $\left(\Delta\right)$

KLT Tracking Method

• A feature-based vision method is known as the KLT (Kanade-Lucas-Tomasi) algorithm based on a model or affine image changes

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics,School of Science and Technology, University of Sussex,

Camera Calibration Toolbox for Matlab

 $\left(\nabla\right)$

- Offers an automatic mechanism for counting the number of squares in each grid
- All calibration images are searched and focal and distortion factor are automatically estimated

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of Informatics, School of Science and Technology, University of Sussex, Falmer, UK, 2005

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics, School of Science and Technology, University of Sussex

Liarokapis, F., Augmented Reality Interfaces - Architectures for Visualising and Interacting with Virtual Information, Sussex theses S 5931, Department of
Informatics,School of Science and Technology, University of Sussex,

 \circledcirc

Cutdoor Markerless Tracking and Registration in AR

<https://www.youtube.com/watch?v=hRRAGuL8lVk>

ACISCO

Questions

