
Lecture 4

OBJECT ORIENTED ANALYSIS

PB007	Software	Engineering	I
Faculty	of	Informatics,	Masaryk	University
Fall 2016

1©	Barbora	Bühnová

Outline

² UML Objects and classes [Lecture 3]

² Finding analysis classes [Lecture 3]

² Relationships between objects and classes
§ Links
§ Associations
§ Dependencies

² Inheritance and polymorphism

² UML State diagram

2©	Clear	View	Training	2010	v2.6

Relationships Between Objects and Classes

Lecture	4/Part	1

3©	Clear	View	Training	2010	v2.6

©	Clear	View	Training	2010	v2.6 4

What is a link?

² Links are connections between objects
§ Think of a link as a telephone line connecting you and a friend.

You can send messages back and forth using this link
² Links are the way that objects communicate

§ Objects send messages to each other via links
§ Messages invoke operations

² OO programming languages implement links as object
references or pointers
§ When an object has a stored reference to another object,

we say that there is a link between the objects

©	Clear	View	Training	2010	v2.6 5

Object diagrams

² Paths in UML
diagrams can be
drawn as
orthogonal,
oblique or curved
lines

² We can combine
paths into a tree if
each path has the
same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique
path
style

orthogonal
path
style

preferred

object

Shape

Square Circle Triangle

©	Clear	View	Training	2010	v2.6 6

What is an association?

² Associations are relationships between classes

² Associations between classes indicate that there may be links
between objects of those classes, while links indicates that there
must be associations

² Can there be a communication between objects of two classes that
have no association between them?

bookClub:Club jim:Personchairman

Club Person

«instantiate» «instantiate» «instantiate»
link

association

links
instantiate

associations

©	Clear	View	Training	2010	v2.6 7

Association syntax

² An association can have role names OR
an association name

² Multiplicity is a constraint that specifies
the number of objects that can participate
in a relationship at any point in time
§ If multiplicity is not explicitly stated in the model

then it is undecided – there is no default multiplicity

Company Person1 0..*

employs

navigability

association
name

multiplicity

Company Person
employer employee

1 0..*

role names

multiplicity: min..max
0..1 zero or 1
1 exactly 1
0..* zero or more
1..* 1 or more
1..6 1 to 6

reading
direction

©	Clear	View	Training	2010	v2.6 8

Multiplicity exercise

² How many
§ Employees can a Company have?
§ Employers can a Person have?
§ Owners can a BankAccount have?
§ Operators can a BankAccount have?
§ BankAccounts can a Person have?
§ BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1owner

0..*

1..* operator

©	Clear	View	Training	2010	v2.6 9

Reflexive associations: file system example

Directory File
0..*10..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

² If ToJohn was a directory, would it still conform to the class diagram?

©	Clear	View	Training	2010	v2.6 10

Hierarchies and networks

A 0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B 0..*

0..*

a1:B

b1:B
c1:B

d1:Be1:B

f1:B

g1:B

hierarchy network

In an association hierarchy, each object
has zero or one object directly above
it.

In an association network, each object
has zero or many objects directly
above it.

©	Clear	View	Training	2010	v2.6 11

Navigability

² Navigability indicates that it
is possible to traverse from
an object of the source
class to objects of the target
class

² Can there be a
communication in a direction
not supported by the
navigability?

² Are some of the cases on
the right equivalent?

Order Product
0..* 0..*

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products
Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable
B to A is navigable

A to B is navigable
B to A is not navigable

A to B is navigable
B to A is undefined

A to B is undefined
B to A is undefined

©	Clear	View	Training	2010	v2.6 12

Associations and attributes

² An association is (through its role name) a representation of an attribute

² Use associations when:
§ The target class is an important part of the model
§ The target class is a class that you have designed yourself

² Use attributes when:
§ The target class is not important, e.g. a primitive type such as number, string
§ The target class is just an implementation detail such as a bought-in component or

a library component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=

©	Clear	View	Training	2010	v2.6 13

Association classes

Company Person
0..* 0..*employment

² Where do we record the Person’s salary?

² We model the association itself as an association class. Exactly one
instance of this class exists for each link between a Person and a Company.

² We can place the salary and any other attributes or operations which are
really features of the association into this class

Company Person0..* 0..*

Job
salary:double

the association class
consists of the class,
the association and the
dashed lineassociation class

©	Clear	View	Training	2010	v2.6 14

Using association classes

Company Person0..* 0..*

Job

salary:double

If we use an association class,
then a particular Person can
have only one Job with a
particular Company

If, however a particular
Person can have multiple
jobs with the same
Company, then we must
use a reified association

Company Person
Job

salary:double

0..*0..* 11

©	Clear	View	Training	2010	v2.6 15

Dependencies

² "A dependency is a relationship between two elements where a
change to one element (the supplier) may affect or supply
information needed by the other element (the client)".
§ In other words, the client depends in some way on the supplier
§ Weaker type of relationship than association
§ Can there be both association and dependency between two classes?

² Three types of dependency:
§ Usage - the client uses some of the services made available by the

supplier to implement its own behavior – this is the most commonly
used type of dependency

§ Abstraction - a shift in the level of abstraction. The supplier is more
abstract than the client

§ Permission - the supplier grants some sort of permission for the client
to access its contents – this is a way for the supplier to control and limit
access to its contents

©	Clear	View	Training	2010	v2.6 16

Usage dependencies

² Stereotypes
§ «use» - the client makes use of the supplier to implement its behaviour
§ «call» - the client operation invokes the supplier operation
§ «parameter» - the supplier is a parameter of the client operation
§ «send» - the client (an operation) sends the supplier (a signal) to some

unspecified target
§ «instantiate» - the client is an instance of the supplier

A

foo(b : B)
bar() : B
doSomething()

B

A :: doSomething() {
B myB = new B();

}
«use»

A «use» dependency is generated between A and B when B is
used in A as a parameter, return value or inside method body

the stereotype is often omitted

©	Clear	View	Training	2010	v2.6 17

Abstraction and permission dependencies

² Abstraction dependencies
§ «trace» - the client and the supplier represent the same concept but at different

points in development
§ «substitute» - the client may be substituted for the supplier at runtime. The

client and supplier must realize a common contract. Use in environments that
don't support specialization/generalization

§ «refine» - the client represents a fuller specification of the supplier
§ «derive» - the client may be derived from the supplier. The client is logically

redundant, but may appear for implementation reasons

² Permission dependencies
§ «access» the public contents of the supplier package are added as private

elements to the namespace of the client package
§ «import» the public contents of the supplier package are added as public

elements to the namespace of the client package
§ «permit» the client element has access to the supplier element despite the

declared visibility of the supplier

©	Clear	View	Training	2010	v2.6 18

Key points

² Links – relationships between objects

² Associations – relationships between classes
§ role names
§ multiplicity
§ navigability
§ association classes

² Dependencies – relationships between model elements
§ usage
§ abstraction
§ permission

©	Clear	View	Training	2010	v2.6 19

Inheritance and polymorphism

Lecture	4/Part	2

©	Clear	View	Training	2010	v2.6 20

Generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent
superclass
base class
ancestor

child
subclass

descendent

generalisation

sp
ec

ia
lis

at
io

n

A generalisation hierarchy

“is kind of”

A	relationship	between	a	more	general	element	and	a	more	
specific	element	(with	more	information)	

©	Clear	View	Training	2010	v2.6 21

Class inheritance

² Subclasses inherit all features of their
superclasses:
§ attributes
§ operations
§ relationships
§ stereotypes, tags, constraints

² Subclasses can add new features
² Subclasses can override superclass

operations
² We can use a subclass instance

anywhere a superclass instance is
expected

Substitutability
Principle

Shape
origin : Point = (0,0)
width : int {>0}
height : int {>0}
draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2

What’s wrong with
these subclasses?

©	Clear	View	Training	2010	v2.6 22

Overriding

² Subclasses often need to override superclass behaviour
² To override a superclass operation, a subclass must provide an

operation with the same signature
§ The operation signature is the operation name, return type and types

of all the parameters

Shape
draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle
draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : intwidth x height p x radius2

What’s wrong with
the superclass?

©	Clear	View	Training	2010	v2.6 23

Abstract operations & classes

² We can’t provide an implementation for
Shape :: draw(g : Graphics) or for
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

² Operations that lack an implementation are abstract operations
² A class with any abstract operations can’t be instantiated and is

therefore an abstract class

concrete
operations

Shape
draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : int

abstract class

concrete
classes

abstract
operations

Abstract class and
operation names
must be in italics

©	Clear	View	Training	2010	v2.6 24

Exercise

Vehicle

JaguarXJS Truck

what’s wrong
with this model?

©	Clear	View	Training	2010	v2.6 25

Polymorphism

² Polymorphism = "many forms"
§ A polymorphic operation has

many implementations
§ Square and Circle provide

implementations for the
polymorphic operations
Shape::draw() and
Shape::getArea()

² The operation in Shape
superclass defines a contract
for the subclasses.

Shape
draw(g : Graphics)
getArea() : int
getBoundingArea() : int

Square Circle

draw(g : Graphics)
getArea() : int

draw(g : Graphics)
getArea() : int

polymorphic
operations

concrete subclasses

abstract
superclass

Canvas

0..*

1

A Canvas object has a collection of Shape objects
where each Shape may be a Square or a Circle

shapes

©	Clear	View	Training	2010	v2.6 26

What happens?

² Each class of object has its
own implementation of the
draw() operation

² On receipt of the draw()
message, each
object invokes the
draw() operation
specified by its class

² We can say that each object
"decides" how to interpret the
draw() message based on its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()

©	Clear	View	Training	2010	v2.6 27

BankAccount example

² We have overridden the deposit() operation even though it is
not abstract.

BankAccount
withdraw()
calculateInterest()
deposit()

CheckingAccount DepositAccount
withdraw()
calculateInterest()

withdraw()
calculateInterest()

Bank
0..*1

ShareAccount
withdraw()
calculateInterest()
deposit()

©	Clear	View	Training	2010	v2.6 28

Key points

² Generalisation, specialisation, inheritance

² Subclasses
§ inherit all features from their parents including constraints and

relationships
§ may add new features, constraints and relationships
§ may override superclass operations

² A class that can’t be instantiated is an abstract class

©	Clear	View	Training	2010	v2.6 29

UML State Diagram

Lecture	4/Part	3

©	Clear	View	Training	2010	v2.6 30

State machines

² Models life stages of a single model element – e.g. object, use case, module

² Every state machine exists in the context of a particular model element that:
§ Has a clear life history modelled as a progression of states, transitions and events
§ Responds to events dispatched from outside of the element

² There are two types of state machines:
§ Behavioural state machines - define the behaviour of a model element
§ Protocol state machines - model the protocol of a classifier

• E.g. call conditions and call ordering of an interface that itself has no behaviour

Off On Off On
turnOff

burnOut

light bulb

turnOn

©	Clear	View	Training	2010	v2.6 31

Basic state machine syntax

² State = a situation or condition during the life of an object
§ Determined at any point in time by the values of its

attributes, the relationships to other objects, or the
activities it is performing.

² Every state machine should have one initial state
which indicates the first state of the sequence

² Unless the states cycle endlessly, state machines
should have a final state which terminates its lifecycle

A BanEvent

initial state transition

event

state final state

Color

red : int
green : int
blue : int

How many states?

©	Clear	View	Training	2010	v2.6 32

State syntax

² Actions are instantaneous
and uninterruptible
§ Entry actions occur

immediately on state entry
§ Exit actions occur

immediately on state leaving

² Internal transitions occur
within the state. They do
not fire transition to a new
state

² Activities take a finite
amount of time and are
interruptible

EnteringPassword

entry/display passwd dialog

exit/validate password

keypress/ echo "*"

help/display help

do/get password

entry and
exit actions

internal
transitions

internal
activity

Action syntax: eventTrigger / action
Activity syntax: do / activity

state name

©	Clear	View	Training	2010	v2.6 33

Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}Protocol
state machine

Specifies legal
sequences of
events.

Behavioral
state machine

Specifies
object’s
reactions to
events.

events guard condition actions

precondition events postcondition

©	Clear	View	Training	2010	v2.6 34

² Choice pseudo state
directs its single incoming
transition to one of its
outgoing transitions
§ Each outgoing transition

must have a mutually
exclusive guard condition

§ Equivalent to two outgoing
transitions from one state

² Junction pseudo state
connects multiple incoming
transitions into one (or more)
transitions.
§ When there are more

outgoing transitions, they
must have guard conditions

Unpaid

FullyPaid PartiallyPaidOverPaid

[payment == balance]

[payment > balance] [payment < balance]

acceptPayment acceptPayment

makeRefund

BankLoan

choice pseudo-state

Choice and junction pseudo states

junction
pseudo state

©	Clear	View	Training	2010	v2.6 35

Events

² "The specification of a noteworthy
occurrence that has location in time and
space"

² Events trigger transitions in state machines
² Events can be shown externally, on

transitions, or internally within states
(internal transitions)

² There are four types of event:
§ Call event
§ Signal event
§ Change event
§ Time event

Off

On

turnOff turnOn

event

©	Clear	View	Training	2010	v2.6 36

close()

Call event

² A call for an operation
execution

² The event should have
the same signature as an
operation of the context
class

² A sequence of actions
may be specified for a
call event - they may use
attributes and operations
of the context class

² The return value must
match the return type of
the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)
[balance < m]

withdraw(m)
[balance >= m]

internal call event action

conditionexternal call event

entry action

SimpleBankAccount

©	Clear	View	Training	2010	v2.6 37

close()

Signal events

² A signal is a
package of
information that is
sent
asynchronously
between objects

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)
[balance < m]

withdraw(m)
[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date
accountNumber : long
amountOverdrawn : long Calling borrowerOverdrawnAccount

signal receipt

©	Clear	View	Training	2010	v2.6 38

close()

Change events

² The action is
performed when the
Boolean expression
transitions from false
to true
§ The event is edge

triggered on a
false to true
transition

§ The values in the
Boolean expression
must be constants,
globals or attributes
of the context class

² A change event
implies continually
testing the condition
whilst in the state

InCredit

deposit(m)/ balance = balance + m
balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m)
[balance < m]

withdraw(m)
[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean
expression

©	Clear	View	Training	2010	v2.6 39

Time events

² Time events occur when a
time expression becomes
true

² There are two keywords,
after and when

² Elapsed time:
§ after(3 months)

² Absolute time:
§ when(date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after(3 months)

Context: CreditAccount class

©	Clear	View	Training	2010	v2.6 40

Composite states

² Have one or more regions that
each contain a nested
submachine
§ Simple composite state

• exactly one region
§ Orthogonal composite state

• two or more regions

² The final state terminates its
enclosing region – all other
regions continue to execute

² The terminate pseudo-state
terminates the whole state
machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate
pseudo-state

©	Clear	View	Training	2010	v2.6 41

[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

do/ dialISP

DialingISP
entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry
pseudo
state

notConnected

dial

connectedexit pseudo-state

NotConnected Connected

entry/ onHook exit/ onHook
do/ useConnection

ISPDialer

the nested states inherit the cancel transition

©	Clear	View	Training	2010	v2.6 42

Orthogonal composite states

² Has two or more regions

² When we enter the superstate, both submachines start
executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors
do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors
do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both
regions have terminated

Unsynchronized exit - exit the superstate when either
region terminates. The other region continues

©	Clear	View	Training	2010	v2.6 43

Key points

² Behavioral and protocol state machines
² States

§ Initial and final
§ Exit and entry actions, activities

² Transitions
§ Guard conditions, actions

² Events
§ Call, signal, change and time

² Composite states
§ Simple and orthogonal composite states

