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Outline

² UML Objects and classes [Lecture 3]

² Finding analysis classes [Lecture 3]

² Relationships between objects and classes
§ Links
§ Associations
§ Dependencies

² Inheritance and polymorphism

² UML State diagram
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Relationships Between Objects and Classes

Lecture	4/Part	1
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What is a link?

² Links are connections between objects
§ Think of a link as a telephone line connecting you and a friend. 

You can send messages back and forth using this link
² Links are the way that objects communicate

§ Objects send messages to each other via links 
§ Messages invoke operations

² OO programming languages implement links as object 
references or pointers
§ When an object has a stored reference to another object, 

we say that there is a link between the objects
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Object diagrams

² Paths in UML 
diagrams can be 
drawn as 
orthogonal, 
oblique or curved 
lines

² We can combine 
paths into a tree if 
each path has the 
same properties

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

role name

link

BookClub

bookClub:Club

ila:Person

erica:Person

naomi:Person

chairperson

secretary

member

BookClub

oblique
path
style

orthogonal
path
style

preferred

object

Shape

Square Circle Triangle
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What is an association?

² Associations are relationships between classes

² Associations between classes indicate that there may be links 
between objects of those classes, while links indicates that there 
must be associations

² Can there be a communication between objects of two classes that 
have no association between them?

bookClub:Club jim:Personchairman

Club Person

«instantiate» «instantiate» «instantiate»
link

association

links 
instantiate 

associations
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Association syntax

² An association can have role names OR 
an association name

² Multiplicity is a constraint that specifies 
the number of objects that can participate 
in a relationship at any point in time
§ If multiplicity is not explicitly stated in the model 

then it is undecided – there is no default multiplicity

Company Person1 0..*

employs

navigability

association 
name

multiplicity

Company Person
employer employee

1 0..*

role names

multiplicity: min..max
0..1 zero or 1
1 exactly 1
0..* zero or more
1..* 1 or more
1..6 1 to 6

reading 
direction
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Multiplicity exercise

² How many
§ Employees can a Company have?
§ Employers can a Person have?
§ Owners can a BankAccount have?
§ Operators can a BankAccount have?
§ BankAccounts can a Person have?
§ BankAccounts can a Person operate?

Company

Person

employee

1

7

employer

BankAccount

0..*

1owner

0..*

1..* operator
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Reflexive associations: file system example

Directory File
0..*10..*

0..1

C

Windows My Documents Corel

Command

autoexec

config

To John

directories files

parent

subdirectory

reflexive association

² If  ToJohn was a directory, would it still conform to the class diagram?
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Hierarchies and networks

A 0..*

0..1

a1:A

b1:A c1:A d1:A

e1:A f1:A g1:A

B 0..*

0..*

a1:B

b1:B
c1:B

d1:Be1:B

f1:B

g1:B

hierarchy network

In an association hierarchy, each object 
has zero or one object directly above 
it.

In an association network, each object 
has zero or many objects directly 
above it.
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Navigability

² Navigability indicates that it 
is possible to traverse from 
an object of the source
class to objects of the target
class

² Can there be a 
communication in a direction 
not supported by the 
navigability?

² Are some of the cases on 
the right equivalent?

Order Product
0..* 0..*

Not navigable
A Product object does not store a list of Orders

An Order object stores a list of Products
Navigable

source target

navigability

A B

A B

A B

A B

A to B is navigable
B to A is navigable

A to B is navigable
B to A is not navigable

A to B is navigable
B to A is undefined

A to B is undefined
B to A is undefined
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Associations and attributes

² An association is (through its role name) a representation of an attribute

² Use associations when:
§ The target class is an important part of the model
§ The target class is a class that you have designed yourself

² Use attributes when:
§ The target class is not important, e.g. a primitive type such as number, string 
§ The target class is just an implementation detail such as a bought-in component or 

a library component e.g. Java.util.Vector (from the Java standard libraries)

address:Address

House

House Address
1 1

address House

address:Address

pseudo-attribute attribute

=
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Association classes

Company Person
0..* 0..*employment

² Where do we record the Person’s salary?

² We model the association itself as an association class. Exactly one 
instance of this class exists for each link between a Person and a Company. 

² We can place the salary and any other attributes or operations which are 
really features of the association into this class

Company Person0..* 0..*

Job
salary:double

the association class 
consists of the class, 
the association and the 
dashed lineassociation class



©	Clear	View	Training	2010	v2.6 14

Using association classes

Company Person0..* 0..*

Job

salary:double

If we use an association class, 
then  a particular Person can 
have only one Job with a 
particular Company

If, however a particular 
Person can have multiple
jobs with the same 
Company, then we must 
use a reified association

Company Person
Job

salary:double

0..*0..* 11
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Dependencies

² "A dependency is a relationship between two elements where a 
change to one element (the supplier) may affect or supply 
information needed by the other element (the client)". 
§ In other words, the client depends in some way on the supplier
§ Weaker type of relationship than association
§ Can there be both association and dependency between two classes?

² Three types of dependency:
§ Usage - the client uses some of the services made available by the 

supplier to implement its own behavior – this is the most commonly 
used type of dependency

§ Abstraction - a shift in the level of abstraction. The supplier is more 
abstract than the client

§ Permission - the supplier grants some sort of permission for the client 
to access its contents – this is a way for the supplier to control and limit 
access to its contents
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Usage dependencies

² Stereotypes
§ «use» - the client makes use of the supplier to implement its behaviour
§ «call» - the client operation invokes the supplier operation
§ «parameter» - the supplier is a parameter of the client operation
§ «send» - the client (an operation) sends the supplier (a signal) to some 

unspecified target
§ «instantiate» - the client is an instance of the supplier

A

foo( b : B )
bar() : B
doSomething()

B

A :: doSomething() {
B myB = new B();

}
«use»

A «use» dependency is generated between A and B when B is 
used in A as a parameter, return value or inside method body

the stereotype is often omitted
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Abstraction and permission dependencies

² Abstraction dependencies
§ «trace» - the client and the supplier represent the same concept but at different 

points in development
§ «substitute» - the client may be substituted for the supplier at runtime. The 

client and supplier must realize a common contract. Use in environments that 
don't support specialization/generalization

§ «refine» - the client represents a fuller specification of the supplier
§ «derive» - the client may be derived from the supplier. The client is logically 

redundant, but may appear for implementation reasons

² Permission dependencies
§ «access»  the public contents of the supplier package are added as private 

elements to the namespace of the client package
§ «import»  the public contents of the supplier package are added as public 

elements to the namespace of the client package
§ «permit»  the client element has access to the supplier element despite the 

declared visibility of the supplier
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Key points

² Links – relationships between objects

² Associations – relationships between classes
§ role names
§ multiplicity
§ navigability
§ association classes

² Dependencies – relationships between model elements
§ usage
§ abstraction
§ permission
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Inheritance and polymorphism

Lecture	4/Part	2
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Generalisation

Shape

Square Circle Triangle

more general element

more specific elements

parent
superclass
base class
ancestor

child
subclass

descendent

generalisation

sp
ec

ia
lis

at
io

n

A generalisation hierarchy

“is kind of”

A	relationship	between	a	more	general	element	and	a	more	
specific	element	(with	more	information)	
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Class inheritance

² Subclasses inherit all features of their 
superclasses:
§ attributes
§ operations
§ relationships 
§ stereotypes, tags, constraints

² Subclasses can add new features
² Subclasses can override superclass

operations
² We can use a subclass instance 

anywhere a superclass instance is 
expected

Substitutability 
Principle

Shape
origin : Point = (0,0)
width : int {>0}
height : int {>0}
draw( g : Graphics )
getArea() : int
getBoundingArea() : int

Square Circle

radius : int = width/2

What’s wrong with 
these subclasses?
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Overriding

² Subclasses often need to override superclass behaviour
² To override a superclass operation, a subclass must provide an 

operation with the same signature
§ The operation signature is the operation name, return type and types 

of all the parameters

Shape
draw( g : Graphics )
getArea() : int
getBoundingArea() : int

Square Circle
draw( g : Graphics )
getArea() : int

draw( g : Graphics )
getArea() : intwidth x height p x radius2

What’s wrong with 
the superclass?
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Abstract operations & classes

² We can’t provide an implementation for 
Shape :: draw( g : Graphics ) or for 
Shape :: getArea() : int
because we don’t know how to draw or calculate the area for a "shape"!

² Operations that lack an implementation are abstract operations
² A class with any abstract operations can’t be instantiated and is 

therefore an abstract class

concrete
operations

Shape
draw( g : Graphics )
getArea() : int
getBoundingArea() : int

Square Circle

draw( g : Graphics )
getArea() : int

draw( g : Graphics )
getArea() : int

abstract class

concrete 
classes

abstract 
operations

Abstract class and 
operation names 
must be in italics
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Exercise

Vehicle

JaguarXJS Truck

what’s wrong 
with this model?
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Polymorphism

² Polymorphism = "many forms"
§ A polymorphic operation has 

many implementations
§ Square and Circle provide 

implementations for the 
polymorphic operations 
Shape::draw() and 
Shape::getArea()

² The operation in Shape 
superclass defines a contract 
for the subclasses.

Shape
draw( g : Graphics )
getArea() : int
getBoundingArea() : int

Square Circle

draw( g : Graphics )
getArea() : int

draw( g : Graphics )
getArea() : int

polymorphic
operations

concrete subclasses

abstract 
superclass

Canvas

0..*

1

A Canvas object has a collection of Shape objects 
where each Shape may be a Square or a Circle

shapes
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What happens?

² Each class of object has its 
own implementation of the 
draw() operation

² On receipt of the draw() 
message, each 
object invokes the 
draw() operation 
specified by its class

² We can say that each object 
"decides" how to interpret the 
draw() message based on its class

:Canvas

s1:Circle

s2:Square

s3:Circle

s4:Circle

1.draw()

2.draw()

3.draw()

4.draw()
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BankAccount example

² We have overridden the deposit() operation even though it is 
not abstract. 

BankAccount
withdraw() 
calculateInterest()
deposit()

CheckingAccount DepositAccount
withdraw()
calculateInterest()

withdraw()
calculateInterest()

Bank
0..*1

ShareAccount
withdraw()
calculateInterest()
deposit()
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Key points

² Generalisation, specialisation, inheritance

² Subclasses
§ inherit all features from their parents including constraints and 

relationships
§ may add new features, constraints and relationships
§ may override superclass operations

² A class that can’t be instantiated is an abstract class
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UML State Diagram

Lecture	4/Part	3
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State machines

² Models life stages of a single model element – e.g. object, use case, module 

² Every state machine exists in the context of a particular model element that:
§ Has a clear life history modelled as a progression of states, transitions and events
§ Responds to events dispatched from outside of the element

² There are two types of state machines:
§ Behavioural state machines - define the behaviour of a model element
§ Protocol state machines - model the protocol of a classifier

• E.g. call conditions and call ordering of an interface that itself has no behaviour

Off On Off On
turnOff

burnOut

light bulb

turnOn
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Basic state machine syntax

² State = a situation or condition during the life of an object
§ Determined at any point in time by the values of its

attributes, the relationships to other objects, or the 
activities it is performing.

² Every state machine should have one initial state 
which indicates the first state of the sequence

² Unless the states cycle endlessly, state machines 
should have a final state which terminates its lifecycle

A BanEvent

initial state transition

event

state final state

Color

red : int
green : int
blue : int

How many states?
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State syntax

² Actions are instantaneous
and uninterruptible
§ Entry actions occur 

immediately on state entry
§ Exit actions occur 

immediately on state leaving

² Internal transitions occur 
within the state. They do 
not fire transition to a new 
state

² Activities take a finite 
amount of time and are 
interruptible

EnteringPassword

entry/display passwd dialog

exit/validate password 

keypress/ echo "*"

help/display help

do/get password

entry and 
exit actions

internal 
transitions

internal 
activity

Action syntax: eventTrigger / action
Activity syntax: do / activity

state name
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Transitions

A B
event1, event2 [guard condition] / act1, act2

behavioral state machine

C D
[precondition] event1, event2 / [postcondition]

protocol state machine {protocol}Protocol 
state machine

Specifies legal 
sequences of 
events.

Behavioral
state machine

Specifies 
object’s 
reactions to 
events.

events guard condition actions

precondition events postcondition
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² Choice pseudo state 
directs its single incoming 
transition to one of its 
outgoing transitions
§ Each outgoing transition 

must have a mutually 
exclusive guard condition

§ Equivalent to two outgoing 
transitions from one state

² Junction pseudo state 
connects multiple incoming 
transitions into one (or more) 
transitions.
§ When there are more 

outgoing transitions, they 
must have guard conditions

Unpaid

FullyPaid PartiallyPaidOverPaid

[payment == balance]

[payment > balance] [payment < balance]

acceptPayment acceptPayment

makeRefund

BankLoan

choice pseudo-state 

Choice and junction pseudo states

junction 
pseudo state 
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Events

² "The specification of a noteworthy 
occurrence that has location in time and 
space"

² Events trigger transitions in state machines
² Events can be shown externally, on 

transitions, or internally within states 
(internal transitions)

² There are four types of event:
§ Call event
§ Signal event
§ Change event
§ Time event

Off

On

turnOff turnOn

event
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close()

Call event

² A call for an operation 
execution

² The event should have 
the same signature as an 
operation of the context 
class

² A sequence of actions 
may be specified for a 
call event - they may use 
attributes and operations 
of the context class

² The return value must 
match the return type of 
the operation

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

internal call event action

conditionexternal call event

entry action

SimpleBankAccount
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close()

Signal events

² A signal is a 
package of 
information that is 
sent 
asynchronously 
between objects

InCredit

deposit(m)/ balance = balance + m

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

SimpleBankAccount

OverdrawnAccount

send a signal

«signal»
OverdrawnAccount

date : Date
accountNumber : long
amountOverdrawn : long Calling borrowerOverdrawnAccount

signal receipt
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close()

Change events

² The action is 
performed when the 
Boolean expression 
transitions from false 
to true
§ The event is edge 

triggered on a 
false to true 
transition

§ The values in the 
Boolean expression 
must be constants, 
globals or attributes 
of the context class 

² A change event 
implies continually 
testing the condition 
whilst in the state

InCredit

deposit(m)/ balance = balance + m
balance >= 5000 / notifyManager()

AcceptingWithdrawal

entry/ balance = balance - m

RejectingWithdrawal

entry/ logRejectedWithdrawal()

withdraw(m) 
[balance < m]

withdraw(m) 
[balance >= m]

SimpleBankAccount

OverdrawnAccount

Boolean
expression
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Time events

² Time events occur when a 
time expression becomes 
true

² There are two keywords, 
after and when

² Elapsed time:
§ after( 3 months )

² Absolute time:
§ when( date =20/3/2000)

Overdrawn

balance < overdraftLimit / notifyManager

Frozen

after( 3 months )

Context: CreditAccount class
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Composite states

² Have one or more regions that 
each contain a nested 
submachine
§ Simple composite state

• exactly one region
§ Orthogonal composite state

• two or more regions

² The final state terminates its 
enclosing region – all other 
regions continue to execute

² The terminate pseudo-state 
terminates the whole state 
machine

A composite state

A B

C

region 1

region 2

submachines

Another composite state

D E

F

terminate
pseudo-state
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[dialtone]

after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier [carrier]

cancel

Simple composite states

do/ dialISP

DialingISP
entry/ offHook

WaitingForDialtone
Dialing

WaitingForCarrier

entry 
pseudo
state

notConnected

dial

connectedexit pseudo-state

NotConnected Connected

entry/ onHook exit/ onHook
do/ useConnection

ISPDialer

the nested states inherit the cancel transition
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Orthogonal composite states

² Has two or more regions

² When we enter the superstate, both submachines start 
executing concurrently - this is an implicit fork

do/ initializeSecuritySensor

Initializing

InitializingFireSensors
do/ initializeFireSensor

InitializingSecuritySensors

Initializing composite state details

do/ monitorSecuritySensor

Monitoring

MonitoringFireSensors
do/ monitorFireSensor

MonitoringSecuritySensors

fire

intruder

Monitoring composite state details

Synchronized exit - exit the superstate when both 
regions have terminated 

Unsynchronized exit - exit the superstate when either
region terminates. The other region continues 
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Key points

² Behavioral and protocol state machines
² States

§ Initial and final
§ Exit and entry actions, activities

² Transitions
§ Guard conditions, actions

² Events
§ Call, signal, change and time

² Composite states
§ Simple and orthogonal composite states


