
Lecture 7

LOW-LEVEL DESIGN AND IMPLEMENTATION

PB007 Software Engineering I
Faculty of Informatics, Masaryk University

Fall 2016

1© Barbora Bühnová

2

Outline

Low-level design

 Implementation issues

UML Interaction diagrams

B. Bühnová, FI MU, PB007 2

Low-level Design

Lecture 7/Part 1

3B. Bühnová, FI MU, PB007

Low-level design

Purpose:

 Include all code-level details into the model

 Decide how exactly the system shall be implemented

 Typically an implicit part of implementation

 Techniques

 Design patterns

 SOLID principles

 Guidelines for dependable/testable/.. programming

Chapter 7 Design and implementation 4

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution in object-oriented world.

 Pattern descriptions make use of object-oriented characteristics

such as inheritance, polymorphism and interface realization.

 A pattern is a description of the problem and the essence

of its solution.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 It should be sufficiently abstract to be reusable in

different settings.

5Chapter 7 Design and implementation

The “Gang of Four” design patterns

 Introduced in a book by GoF in 1995

 Collection of 23 classic software design
patterns divided into three groups:

 Creational

 Structural

 Behavioral

 Observer pattern

 Behavioral pattern

 Separates the display of object
state from the object itself when
multiple displays of state are
needed.

6Chapter 7 Design and implementation

A UML model of the Observer pattern

7Chapter 7 Design and implementation

Design problems

 Be aware that any design problem you are facing may

have an associated pattern that can be applied.

 Tell several objects that the state of some other object has

changed (Observer pattern).

 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).

 Allow classes with incompatible interfaces to work together by

wrapping a new interface around that of an already existing class

(Adapter pattern).

 Reduce the cost of creating and manipulating a large number of

similar objects (Flyweight pattern).

 Restrict object creation for a class to only one instance

(Singleton pattern).

8Chapter 7 Design and implementation

SOLID principles

 The “first five principles” identified by Robert C. Martin in

the early 2000s that stand for five basic principles of

object-oriented programming and design.

 Single responsibility

 Open/closed

 Liskov substitution

 Interface segregation

 Dependency inversion

B. Bühnová, FI MU, PB007 9

Single responsibility principle

 The principle states that every class should have a

single responsibility, and that responsibility should be

entirely encapsulated by the class.

 A responsibility can be understood as a reason to

change, so a class or module should have one, and only

one, reason to change.

 As an example, consider a module that compiles and

prints a report. Such a module can be changed for two

reasons – because the content or the format changes.

 If there is a change to the report compilation process, there is

greater danger that the printing code breaks.

B. Bühnová, FI MU, PB007 10

Open/closed principle

 The principle states that software entities (classes,

modules, functions, etc.) should be open for extension,

but closed for modification.

 Use inheritance and interfaces to avoid code changes

when extending system functionality.

B. Bühnová, FI MU, PB007 11

Component

Specialization1 Specialization2

Interface

Implementation1 Implementation2

Liskov substitution principle

 The principle states that, in a computer program, if S is a

subtype of T, then objects of type T may be replaced

with objects of type S without altering any of the

desirable properties of that program (correctness, task

performed, etc.).

B. Bühnová, FI MU, PB007 12

Rectangle

Square

width and height can be

changed independently

width and height must not

be changed independently

T

S

Interface segregation principle

 The principle states that no client should be forced to

depend on methods it does not use.

 ISP splits large interfaces into smaller and more specific

“role” interfaces so that clients will only have to know

about the methods that are of interest to them.

 ISP is intended to keep a system decoupled and thus

easier to refactor, change, and redeploy.

B. Bühnová, FI MU, PB007 13

iATM
iWithdraw

iChangePIN

iCheckBalance

Dependency inversion principle

 The principle refers to a specific form of decoupling

where conventional dependency relationships

established from high-level modules to low-level

modules are inverted. The principle states:

 A. High-level modules should not depend on low-level

modules. Both should depend on abstractions.

 B. Abstractions should not depend upon details. Details

should depend upon abstractions.

B. Bühnová, FI MU, PB007 14

iPowerLight ElectricityLight Electricity

power plug

Clean code by Robert C. Martin

 A handbook of agile software craftsmanship

 Guidelines for:

 Meaningful names

 Functions

 Comments

 Formatting

 Objects and data structures

 Error handling

 Concurrency

 … and others

 Smells and heuristics

B. Bühnová, FI MU, PB007 15

Design for non-functional qualities

 Design patterns and programming principles help us to

implement specific functionality while maintaining high

code quality

 Respect of design patterns and principles improves system

maintainability

 What if also other non-functional qualities are of high

importance?

 Are there any “patterns” for dependability, performance,

testability, etc.?

16Chapter 7 Design and implementation

Programming guidelines for Dependability

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

17Chapter 13 Dependability Engineering

Limit the visibility of information in a

program

 Program components should only be allowed access to

data that they need for their implementation.

 This means that accidental corruption of parts of the

program state by these components is impossible.

 You can control visibility by making data representation

private and only allowing access to the data through

predefined operations such as get() and set().

Chapter 13 Dependability Engineering 18

Check all inputs for validity

 Range checks

 Check that the input falls within a known range.

 Size checks

 Check that the input does not exceed some maximum size e.g.

40 characters for a name.

 Representation checks

 Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

 Reasonableness checks

 Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter 13 Dependability Engineering 19

Provide a handler for all exceptions

 A program exception is an

error or unexpected event.

 Exception handling constructs

allow for such events to be

handled without the need for

continual status checking to

detect exceptions.

20Chapter 13 Dependability Engineering

Exception handling

 Exception handling is a mechanism that implements

some level of fault tolerance.

 Exception handling strategies delegate responsibility to:

 Caller. Signal to a calling component that an exception has

occurred and provide information about the type of exception.

 Callee. Carry out some alternative processing to the processing

where the exception occurred. This is only possible where the

exception handler has enough information to recover from the

problem that has arisen.

 Controller. Pass control to a run-time support system to handle

the exception.

Chapter 13 Dependability Engineering 21

Minimize the use of error-prone constructs

 Parallelism

 Can result in unforeseen interaction between processes.

 Recursion

 Errors in recursion can cause memory overflow.

 Aliasing

 Using more than 1 name to refer to the same state variable.

 Floating-point numbers

 Inherently imprecise, leading to invalid comparisons.

 Interrupts

 Interrupts can cause a critical operation to be terminated.

 Goto statements, pointers, dynamic memory allocation

22Chapter 13 Dependability Engineering

Provide restart capabilities

 For systems that involve long transactions or user

interactions, you should always provide a restart

capability that allows the system to restart after failure

without users having to redo everything that they have

done.

 Restart depends on the type of system

 Keep copies of forms so that users don’t have to fill them in

again if there is a problem

 Save state periodically and restart from the saved state

Chapter 13 Dependability Engineering 23

Check array bounds

 In some programming languages, such as C or C++, it is

possible to address a memory location outside of the

range allowed for in an array declaration.

 This leads to the well-known ‘buffer overflow’

vulnerability where attackers write executable code into

memory by deliberately writing beyond the top element

in an array.

 If your language does not include bound checking, you

should therefore always check that an array access is

within the bounds of the array.

Chapter 13 Dependability Engineering 24

Include timeouts when calling external

components

 In a distributed system, failure of a remote computer can

be ‘silent’ so that programs expecting a service from that

computer may never receive that service or any

indication that there has been a failure.

 To avoid this, you should always include timeouts on all

calls to external components.

 After a defined time period has elapsed without a

response, your system should then assume failure and

take whatever actions are required to recover from this.

Chapter 13 Dependability Engineering 25

Name all constants that represent real-world

values

 Always give constants that reflect real-world values

(such as tax rates) names rather than using their

numeric values and always refer to them by name

 You are less likely to make mistakes and type the wrong

value when you are using a name rather than a value.

 This means that when these ‘constants’ change (for

sure, they are not really constant), then you only have to

make the change in one place in your program.

Chapter 13 Dependability Engineering 26

Programming guidelines for Performance

 Reduce the resources required for processing individual

algorithms or computations.

 Increase computational efficiency.

 Reduce computational overhead.

 Reduce the number of processed computations.

 Cache results of repeated computations.

 Manage the frequency of event processing.

 Batch data for processing (e.g. within backup activities).

 Control the use of resources.

 Bound execution times and queue sizes, assign priorities.

 Schedule non-urgent resource usage to off-peak hours.

27
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Implementation Issues

Lecture 7/Part 2

28Chapter 7 Design and implementation

Implementation issues

 Reuse
Software composition from existing components.

Integration of diverse systems.

 Configuration management
Keeping track of different versions, continuous integration&delivery.

 Variability of devices
Mobile devices, wearables, IoT. Multi-platform development.

 The right technology and tools

 Code size and complexity

 Cloud computing, big data

29Chapter 7 Design and implementation

Reuse

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-

level programming language.

 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach

became increasingly unviable, especially for commercial

and Internet-based systems.

 An approach to development based around the reuse of

existing software emerged and is now generally used for

business and scientific software.

30Chapter 7 Design and implementation

Reuse levels

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

 Components are collections of objects and object classes that

you reuse in application systems.

 The system level

 At this level, you reuse entire application systems.

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

31Chapter 7 Design and implementation

Reuse costs

 The costs of the time spent in looking for software to

reuse and assessing whether it meets your needs.

 Where applicable, the costs of buying the reusable

software. For large off-the-shelf systems, these costs

can be very high.

 The costs of adapting and configuring the reusable

software components or systems to reflect the

requirements of the system that you are developing.

 The costs of integrating reusable software elements

with each other (if you are using software from different

sources) and with the new code that you developed.

32Chapter 7 Design and implementation

Configuration management

 Configuration management is the name given to the

general process of managing a changing software

system.

 The aim of configuration management is to support the

system integration process so that all developers can

access the project code and documents in a controlled

way, find out what changes have been made, and

compile and link components to create a system.

33Chapter 7 Design and implementation

Configuration management activities

 Version management, where support is provided to keep

track of the different versions of software components.

Version management systems include facilities to coordinate

development by several programmers.

 System integration, where support is provided to help

developers define what versions of components are used to

create each version of a system. This description is then used

to build a system automatically by compiling and linking the

required components.

 Problem tracking, where support is provided to allow users

to report bugs and other problems, and to allow all developers

to see who is working on these problems and when they are

fixed.

34Chapter 7 Design and implementation

Key points

 When developing software, you should always consider

the possibility of reusing existing software, either as

components, services or complete systems.

 Configuration management is the process of managing

changes to an evolving software system. It is essential

when a team of people are cooperating to develop

software.

 Beware of huge variability in devices, technology, tools

and get familiar with them at least on the general level to

know which to choose.

35Chapter 7 Design and implementation

© Clear View Training 2010 v2.6 36

Lecture 7/Part 3

Interaction Diagrams

© Clear View Training 2010 v2.6 37

Interaction diagrams

 Sequence diagrams

 Emphasize time-ordered sequence of message sends

 Show interactions arranged in a time sequence

 Are the richest and most expressive interaction diagram

 Do not show object relationships explicitly - these can be inferred from
message sends

 Communication diagrams

 Emphasize the structural relationships between objects

 Use communication diagrams to make object relationships explicit

 Timing diagrams

 Emphasize the real-time aspects of an interaction

 Interaction overview diagrams

 Show how complex behavior is realized by a set of simpler interactions
(discussed earlier together with Activity diagrams)

© Clear View Training 2010 v2.6 38

Sequence diagram syntax

 Interactions are captured via lifelines (participants in the interaction) and
messages (communications between lifelines)

 Activations indicate when a lifeline has focus of control - they are often omitted from
sequence diagrams

:Registrar
:RegistrationManager

uml:Course

addCourse("UML")

«create»

notes can form

a "script"

describing the

flow

lifeline
sd AddCourse

object creation message

synchronous

message

object is

created at

this point
message

return

activation

The Registrar selects

"add course".

The system creates

the new Course.

© Clear View Training 2010 v2.6 39

Lifelines

 A lifeline represents a single participant in an interaction

 Shows how a classifier instance may participate in the interaction

 Lifelines have:

 name - the name used to refer to the lifeline in the interaction

 selector - a boolean condition that selects a specific instance

 type - the classifier that the lifeline represents an instance of

 They must be uniquely identifiable within an interaction by name, type or both

 The lifeline has the same icon as the classifier that it represents

jimsAccount [id = "1234"] : Account

name selector type

© Clear View Training 2010 v2.6 40

Messages

 A message represents a communication between two lifelines

synchronous

message

asynchronous

send

message

return

arrow type

creation :A

type of

message

destruction

found

message

lost

message

calling an operation synchronously

the sender waits for the receiver to complete

calling an operation asynchronously, sending a signal

the sender does not wait for the receiver to complete

semantics

returning from a synchronous operation call

the receiver returns focus of control to the sender

the sender creates the target

the sender destroys the receiver

the message is sent from outside the scope of the interaction

the message fails to reach its destination

© Clear View Training 2010 v2.6 41

Deletion and self-delegation

 Self delegation is when a lifeline sends a message to itself

 Generates a nested activation

:Registrar
:RegistrationManager uml:Course

deleteCourse("UML")

sd DeleteCourse

object is

deleted at

this point

«destroy»

self delegation

findCourse("UML")

nested activation

RegistrationManager

addCourse()

findCourse()

deleteCourse()

Course

0..*

1

© Clear View Training 2010 v2.6 42

Combined fragments – opt and alt

 OPT semantics:

 single operand that

executes if the

condition is true

 ALT semantics:

 two or more operands

each protected by its

own condition

 an operand executes if

its condition is true

 use else to indicate the

operand that executes

if none of the

conditions are true

:A :B :C :D

opt [condition]

do this if condition is true

alt

do this if condition1 is true

[condition1]

[condition2]

do this if condition2 is true

[else]

do this if neither condition is true

sd example of opt and alt

IF .. THEN

SELECT .. CASE

© Clear View Training 2010 v2.6 43

Combined fragments – loop and break

 LOOP semantics:

 Loop min times, then loop (max – min)
times while condition is true

 LOOP syntax:

 A loop without min, max or condition is
an infinite loop

 condition can be

• Boolean expression

• Plain text expression provided it is clear!

 Break specifies what happens when the
loop is broken out of:

 The break fragment executes

 The rest of the loop after the break does
not execute

 The break fragment is outside the loop
and so should overlap it as shown

:A :B

loop min, max [condition]

do something

sd examples of loop

loop [condition]

do something

loop while guard

condition is true

break on breaking out do this

do something else

must be global

relative to loop

© Clear View Training 2010 v2.6 44

Loop idioms

type of loop semantics loop expression

infinite loop keep looping forever loop *

for i = 1 to n

{body}

repeat (n) times loop n

while(booleanExpression)

{body}

repeat while booleanExpression
is true

loop [booleanExpression]

repeat

{body}

while(booleanExpression)

execute once then repeat while
booleanExpression is true

loop 1, * [booleanExpression]

forEach object in collection

{body}

Execute the loop once for each
object in a collection

loop [for each object in collection]

forEach object in ObjectType
{body}

Execute the loop once for each
object of a particular type

loop [for each object in :ObjectType]

© Clear View Training 2010 v2.6 45

The rest of the operators

operator long name semantics

par parallel Both operands execute in parallel

seq weak
sequencing

The operands execute in parallel subject to the constraint that
event occurrences on the same lifeline from different operands must
happen in the same sequence as the operands

ref reference The combined fragment refers to another interaction

strict strict
sequencing

The operands execute in strict sequence

neg negative The combined fragment represents interactions that are invalid

critical critical region The interaction must execute atomically without interruption

ignore ignore Specifies that some messages are intentionally ignored in the
interaction

consider consider Lists the messages that are considered in the interaction (all others
are ignored)

assert assertion The operands of the combined fragments are the only valid
continuations of the interaction

© Clear View Training 2010 v2.6 46

addCourse("UML")

uml = Course("UML")

addCourse("UML")

Sequence diagrams in design

:Registrar
:RegistrationUI

uml:Course

sd AddCourse - design

:RegistrationManager :DBManager

save(uml)

 Could you draw a UML Class diagram corresponding to the
sequence diagram above?

© Clear View Training 2010 v2.6 47

 Communication diagrams emphasize the structural aspects of an
interaction - how lifelines connect together

 Compared to sequence diagrams they are semantically weaker

 Object diagrams are a special case of communication diagrams

2: addCourse("MDA")

:Registrar

:RegistrationManager

mda:Course

uml:Course

1: addCourse("UML") 1.1: «create»

2.1: «create»

sd AddCourses

link

messagesequence number

lifeline

object creation

message

Communication diagram syntax

© Clear View Training 2010 v2.6 48

Iteration

 Iteration is shown by
using the iteration
specifier (*), and an
optional iteration clause

 There is no prescribed
UML syntax for iteration
clauses

 Use code or pseudo
code

 To show that messages
are sent in parallel use
the parallel iteration
specifier, *//

iteration clause

1: printCourses()

:Registrar

:RegistrationManager

[i]:Course

1.1.1: print()

1.1 * [for i = 1 to n] : printCourse(i)

sd PrintCourses

iteration specifier

© Clear View Training 2010 v2.6 49

Branching

 Branching is modelled by prefixing the sequence number with a guard
condition

 There is no prescribed UML syntax for guard conditions

 In the example above, we use the variable found. This is true if both the
student and the course are found, otherwise it is false

:RegistrationManager
1: register ("Jim", "UML")

:Registrar

course:Course

1.3 [found] : register(student)

1.1: student = findStudent("Jim")

1.4 [!found] : error()

1.2: course = findCourse("UML")

sd register student for course

It’s hard

to show

branching

clearly!

found = (student != null) & (course != null)

guard condition

return value from message

© Clear View Training 2010 v2.6 50

{t <= 15} {t = 10}{t > 30}

{t <= 15} {t = 30}

Timing diagrams

 Emphasize the real-time

aspects of an interaction

 Used to model timing

constraints

 Lifelines, their states or

conditions are drawn

vertically, time horizontally

 It's important to state the

time units you use in the

timing diagram

sd IntruderThenFire

soundingFireAlarm

soundingIntruderAlarm

off

:S
ir
e

n

0 10 20 30 40 50

state or

condition

lifeline

intruder

intruder

fire

time in minutes

event

timing ruler

duration constraint

60

resting

70 80 90 100

sd IntruderThenFire

sounding

Intruder

Alarm

:S
ir
e

n

off resting

sounding

Intruder

Alarm

sounding

fire Alarm

state or condition
all times in minutes

compact

form

© Clear View Training 2010 v2.6 51

{t <= 0.016}

{t <= 0.016}

soundIntruderAlarm() soundIntruderAlarm()

soundFireAlarm()

Messages on timing diagrams

 You can show
messages between
lifelines on timing
diagrams

 Each lifeline has its
own partition

sd SirenBehavior

soundingIntruderAlarm

off

:S
ir
e

n

{t <= 15}

triggered

notTriggered

:I
n

tr
u

d
e

rS
e
n

s
o
rM

o
n
it
o

r

{t <= 15}{t = 30}

all times in minutes

resting

triggered

notTriggered

:F
ir
e

S
e

n
s
o

rM
o

n
it

o
r

soundingFireAlarm

messages

© Clear View Training 2010 v2.6 52

Key points

 There are four types of interaction diagrams:

 Sequence diagrams – emphasize time-ordered sequence of

message sends

 Communication diagrams – emphasize the structural

relationships between lifelines

 Timing diagrams – emphasize the real-time aspects of an

interaction

 Interaction overview diagrams – show how complex behavior is

realized by a set of simpler interactions; presented together with

Activity diagrams

