
Lecture 8

ARCHITECTURE DESIGN

PB007	Software	Engineering	I
Faculty	of	Informatics,	Masaryk	University
Fall 2016

1©	Barbora Bühnová

Topics covered

² Architecture design

² UML Packages (Analysis)

² UML Component Diagram (Design)

² UML Deployment Diagram (Realisation)

2Chapter	6	Architectural	design

Architecture Design

Lecture	8/Part	1

3Chapter	6	Architectural	design

Topics covered

² Architectural views

² Architectural design decisions

² Architectural patterns

² Application architectures

4Chapter	6	Architectural	design

Architectural abstraction

² Architecture in the small (analysis) is concerned with
the architecture of individual programs. At this level, we
are concerned with the way that an individual program is
decomposed into components.

² Architecture in the large (design) is concerned with
the architecture of complex enterprise systems that
include other systems, programs, and program
components. These enterprise systems are distributed
over different computers, which may be owned and
managed by different companies.

5Chapter	6	Architectural	design

4 + 1 view model of software architecture

6Chapter	6	Architectural	design

Logical	view shows	the	key	
abstractions	in	the	system	as	

objects	or	object	classes.	

Physical	view shows	
system	hardware	and	

how	software	components	
are	distributed	across	system	

processors.

Process	view shows	how,	at	
run-time,	the	system	is	
composed	of	interacting	
processes.	

Use	cases	and	
scenarios	view

Development	view
shows	how	the	software	
is	decomposed	for	
development.

Architectural design decisions

² Architectural design is a creative process so the process
differs depending on the type of system being
developed.

² However, a number of common decisions span all
design processes and these decisions affect the non-
functional characteristics of the system.

² Software architecture gives answers to the most
expensive questions.

– heard from O. Krajíček

7Chapter	6	Architectural	design

Architectural design decisions

² How will the system be decomposed into modules?
² What approach will be used to structure the system?

² What architectural styles are appropriate?
² What control strategy should be used?

² Is there a generic application architecture that can
be used?

² How should the architecture be documented?

² How will the system be distributed?
² How will the architectural design be evaluated?

8Chapter	6	Architectural	design

Architecture and system characteristics

² Performance
§ Localise critical operations and minimise communications.

Use large rather than fine-grain components.
² Security

§ Use a layered architecture with critical assets in the inner layers.
² Safety

§ Localise safety-critical features in a small number of
components.

² Reliability and Availability
§ Include redundant components and mechanisms for fault

tolerance.
² Maintainability

§ Use fine-grain, replaceable components.
9Chapter	6	Architectural	design

Architectural patterns

² Patterns are a means of representing, sharing and
reusing knowledge.

² An architectural pattern is a stylized description of good
design practice, which has been tried and tested in
different environments.

² Patterns should include information about when they are
and when the are not useful.

The zen of architecture = For the beginner architect there are so
many ways and options of doing pretty much anything, but for a master,
there only are a few.

– Juval Löwy
10Chapter	6	Architectural	design

The Model-View-Controller (MVC) pattern

11Chapter	6	Architectural	design

² Separates presentation and interaction from the system
data.

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The
system is structured into three logical components that interact with each
other. The Model component manages the system data and associated
operations on that data. The View component defines and manages how the
data is presented to the user. The Controller component manages user
interaction (e.g., key presses, mouse clicks, etc.) and passes these
interactions to the View and the Model.

Example Figure on the next slide shows the architecture of a web-based application
system organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also
used when the future requirements for interaction and presentation of data
are unknown.

Advantages Allows the data to change independently of its representation and vice
versa. Supports presentation of the same data in different ways with
changes made in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model
and interactions are simple.

12Chapter	6	Architectural	design

Web application architecture using MVC

13Chapter	6	Architectural	design

The Layered architecture pattern

² Organises the system into a set of layers with interfaces
to other layers. Supports incremental development.

14Chapter	6	Architectural	design

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality
associated with each layer. A layer provides services to the
layer above it so the lowest-level layers represent core services
that are likely to be used throughout the system.

Example A layered model of a system for sharing copyright documents
held in different libraries.

When used Used when building new facilities on top of existing systems;
when the development is spread across several teams with
each team responsibility for a layer of functionality; when
there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

Disadvantages In practice, providing a clean separation between layers is
often difficult and a high-level layer may have to interact
directly with lower-level layers rather than through the layer
immediately below it. Performance can be a problem because
of multiple levels of interpretation of a service request as it is
processed at each layer.

15Chapter	6	Architectural	design

The architecture of the LIBSYS system

16Chapter	6	Architectural	design

The Repository architecture pattern

² When large amounts of data are to be shared among
subsystems, the repository model offers a solution.

17Chapter	6	Architectural	design

The Repository architecture pattern

Name Repository

Description All data in a system is managed in a central repository that is
accessible to all system components. Components do not interact
directly, only through the repository.

Example Figure on the previous slide is an example of an IDE where the
components use a repository of system design information. Each
software tool generates information which is then available for use by
other tools.

When used You should use this pattern when you have a system in which large
volumes of information are generated that has to be stored for a
long time. You may also use it in data-driven systems where the
inclusion of data in the repository triggers an action or tool.

Advantages Components can be independent—they do not need to know of the
existence of other components. Changes made by one component can
be propagated to all components. All data can be managed
consistently (e.g., backups done at the same time) as it is all in one
place.

Disadvantages The repository is a single point of failure so problems in the
repository affect the whole system. May be inefficiencies in
organizing all communication through the repository. Distributing
the repository across several computers may be difficult.

18Chapter	6	Architectural	design

The Client-server architecture pattern

² Distribution of data and processing across stand-alone
service-providing servers and clients calling the services.

19Chapter	6	Architectural	design

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is
organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Example Figure on the previous slide is an example of a film and video/DVD
library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a
range of locations. Because servers can be replicated, may also
be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be
distributed across a network. General functionality (e.g., a
printing service) can be available to all clients and does not need
to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of
service attacks or server failure. Performance may be
unpredictable because it depends on the network as well as the
system. May be management problems if servers are owned by
different organizations.

20Chapter	6	Architectural	design

The Pipe and filter architecture pattern

² Functional transformations process their inputs to
produce outputs.

² Variants of this approach are very common. When
transformations are sequential, this is known as batch
sequential model used in data processing systems.

21Chapter	6	Architectural	design

The Pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each
processing component (filter) is discrete and carries out one type of
data transformation. The data flows (as in a pipe) from one
component to another for processing.

Example Figure on the previous slide is an example of a pipe and filter system
used for processing invoices.

When used Commonly used in data processing applications (both batch- and
transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style
matches the structure of many business processes. Evolution by
adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between
communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases
system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

22Chapter	6	Architectural	design

Application architectures

² Application systems are designed to meet an
organisational need.

² As businesses have much in common, their
application systems also tend to have a common
architecture that reflects the application requirements.

² A generic application architecture is an architecture
for a type of software system that may be configured
and adapted to create a system that meets specific
requirements.

23Chapter	6	Architectural	design

Examples of application types

² Data processing applications
§ Data driven applications that process data in batches without

explicit user intervention during the processing.

² Transaction processing applications
§ Data-centred applications that process user requests and update

information in a system database.

² Event processing systems
§ Applications where system actions depend on interpreting

events from the system’s environment.

² Language processing systems
§ Applications where the users’ intentions are specified in a formal

language that is processed and interpreted by the system.
Chapter	6	Architectural	design 24

The architecture of a transaction processing
application (ATM system) – a process view

25Chapter	6	Architectural	design

Layered architecture of a transaction
processing application (Information system)

26Chapter	6	Architectural	design

Pipe and filter architecture of a language
processing system (Compiler)

27Chapter	6	Architectural	design

Repository architecture of a language
processing system

28Chapter	6	Architectural	design

Key points

² A software architecture is a description of how a
software system is organized.

² Architectural design decisions include decisions on the
type of application, the distribution of the system, the
architectural styles to be used.

² Architectural patterns are a means of reusing
knowledge about generic system architectures. They
describe the architecture, explain when it may be used
and describe its advantages and disadvantages.

² Application systems architectures embody a common
architecture that the businesses have in common.

Chapter	6	Architectural	design 29

©	Clear	View	Training	2010	v2.6 30

UML Packages (Analysis)

Lecture	8/Part	2

©	Clear	View	Training	2010	v2.6 31

Packages

² A package is a general purpose mechanism for
organising model elements into groups
§ Group semantically related elements
§ Define a “semantic boundary” in the model
§ Provide units for parallel working and configuration management

² In UML 2 a package is a purely logical grouping
mechanism
§ Use components for physical grouping

² Analysis packages contain:
§ Analysis classes, analysis packages, use cases, use case

realizations.

©	Clear	View	Training	2010	v2.6 32

Package syntax

Membership

+ClubMembership
+Benefits
+MembershipRules
+MemberDetails:Member
-JoiningRules

Membership

Membership:MemberDetails

Membership

ClubMembership

MembershipRules

BenefitsJoiningRules

MemberDetails

Member

«access»

public	
(exported)	
elements
private	
element

qualified	
package	
name

accessed	from
another	package

• Use	stereotypes	to	distinguish	different package	purposes.

©	Clear	View	Training	2010	v2.6 33

Nested packages

n Each	package	defines	an	
encapsulated	namespace	i.e.	
all	names	must	be	unique	
within	the	package	

n If	an	element	is	visible	within	
a	package	then	it	is	visible	
within	all	nested	packages	
n e.g.	Benefits	is	visible	

within	MemberDetails
n Show	containment	using	

nesting	or	the	containment	
relationship

n Use	«access»	or	«import»	to	
merge	the	namespace	of	
nested	packages	with	the	
parent	namespace	

Membership

ClubMembership

MembershipRules

Benefits

JoiningRules

MemberDetails

Member

«import»

containment	relationship

anchor	icon

Membership

ClubMembership

MembershipRules

BenefitsJoiningRules

MemberDetails

Member

«import»

©	Clear	View	Training	2010	v2.6 34

Package dependencies

Supplier «use» Client

Supplier «import» Client

Supplier «access» Client
Public	elements	of	the	supplier	namespace	are	added	as	private	
elements	to	the	client	namespace.	Not	transitive.

Public	elements	of	the	supplier	namespace	are	added	as	public	
elements	to	the	client	namespace.	Transitive.

An	element	in	the	client	uses	an	element	in	the	supplier	in	
some	way.	The	client	depends	on	the	supplier.	Transitive.

«trace»	usually	represents	a	historical	development	of	one	
element	into	another	more	refined	version.	It	is	an	extra-model	
relationship.	Transitive.

Analysis
Model

«trace» Design
Model

dependency semantics

C B A
transitivity	- if	dependencies	x	and	y	are	transitive,	
there	is	an	implicit	dependency	between	A	and	C

y x

©	Clear	View	Training	2010	v2.6 35

Package generalisation

² The more specialised child
packages inherit the public and
protected elements in their parent
package

² Child packages may override
elements in the parent package.
Both Hotels and CarHire
packages override Product::Item

² Child packages may add new
elements. Hotels adds Hotel and
RoomType, CarHire adds Car

+Price
+Market
+Item
-MicroMarket

Product

+Product::Price
+Product::Market
+Item
+Hotel
+RoomType

Hotels

+Product::Price
+Product::Market
+Item
+Car

CarHire

children

parent

©	Clear	View	Training	2010	v2.6 36

Architectural analysis

² This involves organising the analysis classes into a set
of cohesive packages
§ The architecture should be partitioned to separate concerns,

such as to specific and application general layers
§ Coupling between packages should be minimised

Products

Inventory
Management

Sales

Account
Management

application
specific	layer

application
general	layer

partitions

©	Clear	View	Training	2010	v2.6 37

Finding analysis packages

² A cohesive group of closely related classes or a class hierarchy

² 4 to 10 classes per package

² Minimise dependencies between packages

² Localise business processes in packages where possible

² Minimise nesting of packages

² Don’t worry about dependency stereotypes and package generalisation

² Refine package structure as analysis progresses

² Avoid cyclic dependencies!

A merge splitA B A B
C

©	Clear	View	Training	2010	v2.6 38

Key points

² Packages are the UML way of grouping modeling
elements

² There are dependency and generalisation relationships
between packages

² The package structure of the analysis model defines the
logical system architecture

©	Clear	View	Training	2010	v2.6 39

UML Component Diagram (Design)

Lecture	8/Part	3

©	Clear	View	Training	2010	v2.6 40

Example of a (layered) architecture

«subsystem»
GUI

«subsystem»
Customer

«subsystem»
Order

«subsystem»
Product

«subsystem»
Accounts

«subsystem»
java.sql

«subsystem»
{global}
java.util

«subsystem»
javax.swing

Customer
Manager

Product
Manager

OrderManager

Account
Manager

presentation

business	
logic

utility

©	Clear	View	Training	2010	v2.6 41

What is a component?

² The UML 2.0 specification states that, "A component
represents a modular part of a system that
encapsulates its contents and whose manifestation is
replaceable within its environment"
§ A black-box whose external behaviour is completely defined by

its provided and required interfaces
§ May be substituted for by other components provided they all

support the same protocol

² Components can be:
§ Physical – can be directly instantiated at run-time e.g. an

Enterprise JavaBean (EJB)
§ Logical – a purely logical construct e.g. a subsystem

©	Clear	View	Training	2010	v2.6 42

«delegate»

Component syntax

² Components may have provided and required interfaces,
ports, internal structure
§ Provided and required interfaces usually delegate to internal parts
§ You can show the parts nested inside the component icon or

externally, connected to it by dependency relationships

«component»

AI1 I2

provided	
interface

required	
interface

component
«component»

A
B C

I1
I2

I2

part

«delegate»

black	box	notation white	box	notation

I1

©	Clear	View	Training	2010	v2.6 43

Provided interface syntax

² A provided interface indicates that a classifier
implements the services defined in an interface

CDBook

Borrow

«interface»
Borrow
borrow()
return()
isOverdue()

CDBook

“Lollipop”	style	notation
(note:	you can’t	show	interface	operations	
or	attributes	with	this	notation)

“Class”	style	notation

interface

realization
relationship

©	Clear	View	Training	2010	v2.6 44

Required interface syntax

² A required interface indicates that a classifier uses the
services defined by the interface

Borrow

Library

required	interface

Borrow

Library

«interface»
Borrow

Library

class	style	notation lollipop	style	notation

©	Clear	View	Training	2010	v2.6 45

Assembly connectors

² You can connect provided and required interfaces using
an assembly connector

Borrow

Book CD

Library
1 1

0..* 0..*

assembly
connector

©	Clear	View	Training	2010	v2.6 46

Ports for organizing interfaces

² A port specifies an interaction point between a classifier
and its environment

² A port may have a name and is typed by its provided and
required interfaces:
§ It is a semantically cohesive set of provided and required

interfaces

DisplayMedium

Print,	Display

Book

presentation

port
Viewer

Book
presentation

©	Clear	View	Training	2010	v2.6 47

Using interfaces

² Advantages:
§ When we design with classes, we are designing to specific

implementations
§ When we design with interfaces, we are instead designing to

contracts which may be realised by many different implementations
(classes)

§ Designing to contracts frees our model from implementation
dependencies and thereby increases its flexibility and extensibility

² Disadvantages:
§ Flexibility may lead to complexity
§ Too many interfaces can make a system too flexible!
§ Too many interfaces can make a system hard to understand

©	Clear	View	Training	2010	v2.6 48

Key points

² Interfaces specify a named set of public features:
§ They define a contract that classes and subsystems may realise
§ Programming to interfaces rather than to classes reduces

dependencies between the classes and subsystems in our
model

§ Programming to interfaces increases flexibility and extensibility

² Design subsystems and interfaces allow us to:
§ Componentize our system
§ Define an architecture

©	Clear	View	Training	2010	v2.6 49

UML Deployment Diagram (Realisation)

Lecture	8/Part	4

©	Clear	View	Training	2010	v2.6 50

Deployment model

² The deployment model models system’s physical architecture and
the mapping of the software architecture to the physical nodes
§ Each node is a type of computational resource
§ Nodes have relationships that represent methods of communication
§ Artifacts represent physical software e.g. a JAR file or .exe file

«device»
WindowsPC

«execution	environment»
IE6

«device»
LinuxPC

«execution	environment»
Apache

0..* 0..*«http»

node

association

Descriptor
form	model

©	Clear	View	Training	2010	v2.6 51

Instance form model

² A node instance represents
an actual physical resource
§ e.g. JimsPC:WindowsPC - node

instances have underlined names

«device»
JimsPC:WindowsPC

«execution	environment»
:IE6

«device»
WebServer1:LinuxPC

«execution	environment»
:Apache

node	instance

«device»
IlasPC:WindowsPC

«execution	environment»
:IE6

«http»

Instance	
form	model

©	Clear	View	Training	2010	v2.6 52

1 1

Artifacts and components

² Artifacts and components
represent the software
deployed on physical nodes

² An artifacts represents a
concrete deployed real-world
thing, such as a file
§ Artifacts = Physical level

² Artifacts provide the physical
manifestation for one or more
components
§ Components = Logical level

«component»
Library

«component»
Book

«artifact»
librarySystem.jar

«manifest» «manifest»

«component»
Ticket

«manifest»

BookImpl

ISBN

1

LibraryImpl

TicketImpl

TicketID

1

Book Library Ticket

«artifact»
jdom.jar

depends

©	Clear	View	Training	2010	v2.6 53

Example

² Artifacts are deployed on nodes, artifact instances are deployed on
node instances

deployment	descriptor
artifact	instance

«device»
client:WindowsPC

«device»
server:WindowsPC

«execution	environment»
:J2EE	Server

«RMI»

«JAR»
:ConverterApp.ear

«JAR»
:ConverterClient.jar

«deployment	spec»
converterDeploymentSpecification

EnterpriseBeanClass:	ConverterBean
EnterpriseBeanName:	ConverterBean
EnterpriseBeanType:	StatelessSession

©	Clear	View	Training	2010	v2.6 54

Key points

² The descriptor form deployment diagram
§ Allows you to show how functionality represented by artifacts is

distributed across nodes
§ Nodes represent types of physical hardware or execution

environments

² The instance form deployment diagram
§ Allows you to show how functionality represented by artifact

instances is distributed across node instances
§ Node instances represent actual physical hardware or execution

environments

