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•Computational power increases 
•(2015) Tianhe-2, China - 3,120,000 cores 

•The larger the system, the more frequent 
critical events 
•Lower overall system utilisation 
•Hardware failure, software failure, and 

user errors

Today systems
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•Crashes  
•immediately stop the system  
•easily identifiable (e.g., disk failure)  
•but can originate a large number of events 

spread across components 
•Deviations from the expected output  

•let the system run  
•reveal only at completion of system tasks

Manage failures …
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… we need information on system behaviour 
and make failure predictions

To better manage failures …
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• Part of such data traces the change in 
behaviour of the system and its sub-
components 

• Logging services store state changes of a 
system in archives, logs

Systems generate big data
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•How can we exploit log data to model and 
predict system behaviour?

Mining logs
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• A log event represents a change in a 
system state

Log events
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xml log event

<Info 
   TimeStamp=“2015-04-08T07:32:37.345”
   File=“XXX.Control.ObservingModes.ObservingModeBaseImpl" 
   Line="231" Routine=“beginSubscan" 
   Host="XXX01" 
   Process=“XXX/javaContainer" 
   SourceObject=“XXX/Array005" 
   Thread="RequestProcessor-35023" 
   LogId=“343355" 
   Audience=“Operator">
<![CDATA[Text message … here]]>
</Info>



9

•Some events can tell about undesirable 
system behaviour

System misbehaviour
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• Events in error state (error events) act as 
alerts of system failures: 
• Interpretation of event data might be hard 
• Originated from a series of preceding events

Error events act as alerts
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Logs can be cryptic

SAP
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•Failure, but the program exited cleanly

Interpretation

YY-MM-DD-HH:MM:SS NULL ZZZ MYHOST FAILURE xxx exited 
normally with exit code 0
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• If the system administrator was doing 
maintenance on the machine, this 
message is a harmless artefact of his 
actions 

• If it was generated during normal 
machine operation, this message 
indicates that all running jobs on the 
computer were undesirably killed

Interpretation
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•We need to understand the operational 
context

Operational context
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•System changes can have introduced errors 
much earlier than an error manifests in logs

Originated from a series of 
preceding events
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The classification problem

Data Sets Classifier

G2 =Non-Faulty

G1= Faulty

Features
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• Event sequence: set of events ordered by 
their timestamp occurring within a given 
time window 

• A sequence abstraction is a 
representation of such sequence (e.g., 
vector) that can be used to feed classifiers 
(features)

Sequences
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A.  Isolating sequences 
•Identify sequence length 
•Characterise sequence information 

B.  Build sequence abstraction (e.g., a vector)  
C.  Build features

Building features



19

Isolating sequences

Different length, different types
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•μi – number of the events of type i in a 
sequence (multiplicity) 

• sv=[μ1, …,μn] – vector of event 
multiplicities

Sequence abstraction
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{General, Log In, Performance, Systems} 
sv1=[0,1,0,1]  
sv2=[2,1,1,0]

Example – sequence 
abstraction
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Multiple  sequences and users

µ1 … µn

s7

s30

s2
s14

s10

Same length, same types
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• v= [sv, μ(sv), ν(sv)] – feature 
•μ(sv) = # sequences mapping onto sv 
•ν(sv) = average # of users in sequences mapping 

onto sv 

•ρ(sv) = number of errors in sequences 
mapping onto sv 

• v is an faulty feature if at least one event 
in one sequence is in error state, ρ(sv)>0.

Features
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v1= [0,1,0,1;1,1],  sv1=[0,1,0,1]  
μ(sv1) =1,  ν(sv1)=1, ρ(sv1)=0 

v2 = [2,1,1,0;1,2], sv2=[2,1,1,0]  
μ(sv2) =1,  ν(sv2)=2, ρ(sv2)=2

Example - features



Which models do we use to 
predict system behaviour?
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The classification problem

Data Sets Classifier

Different ex-ante 
distributions:  
(faulty, non-faulty)

G2 =Non-Faulty

G1= Faulty

Ex-post classification differs 
on different classifier’s 
thresholds

Features
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• The problem varies depending on how 
many errors we allow in the system 

• c – cut-off value, i.e., number of errors in a 
feature 

• Categories: 
• G1(c)={v = [sv, μ(sv),ν(sv)] | ρ(sv)≥c} - faulty 

• G2(c)={v = [sv, μ(sv),ν(sv)] | ρ(sv)<c} - non-faulty

Parametric classification
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Build classifiers on historical 
data

Classifier

Training Set

Test Set

1. To tune classifier’s 
parameters

2. To compute classifier’s 
fitting performance
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Compare prediction 
performance

Classifier1

Validation 
Set

Classifier2

Classifiern

…
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• Did we put too much information in our 
features? 
• Information Gain selects feature 

attributes that most contribute to the 
information of a given classification 
category

Information Gain



The case study - a telemetry 
system
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System applications
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•Different kernels 
• Multilayer perceptron 

• Linear  

• Radial Basis Function

Support Vector Machines
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• Best performance at individual application 
(MP, c=3): 
• 1% false positive rate, 94% true positive rate, 

and 95% precision 

• Best performance across applications 
averaged over models for c=2,  
• 9% false positive rate, 78% true positive rate, 

and 95% precision, 

Findings



What can predictions tell 
administrators?
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FPr=11%, TPr=82%
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Example
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• Application that manages software tools of 
cars 
• Pervasive in the telemetry system 

• 106 distinct sequences of 10 different 
event types, 18% multiple sequences, and 
89% with more than one user	

Example - ST6
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• c=1 

• G1(1)={v = [sv, μ(sv),ν(sv)] | ρ(sv)≥1} 

• G2(1)={v = [sv, μ(sv),ν(sv)] | ρ(sv)<1} 

• IG reduction from 12  to 7 still including μ 
and ν

ST6 - Analysis
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Confusion matrix - MP pred.

TPr

FPr



41

• Behaviour is the same in next three 
months 

• 1000 sequences 
• Category balance in future sets is the one 

of the test set (39%) 
• 390 faulty sequences and 610 non- faulty 

sequences

Prediction - assumptions
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• 450 (45%*1000) predicted faulty 
sequences 

• Predicted faulty sequences that have no 
errors:  
• 67 = 11%*610   

• Predicted non-faulty sequences that have 
an error   
• 70 =18%*390 

In numbers

Pred pos Pred neg Total

Pos 82% 18% 100%

Neg 11% 89% 100%

Total 45% 54% 100%
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• Inspection cost.  

• Wasting time ≥ 67 * average cost to fix 
one error 

• Cost for undiscovered errors.  
• Defect slippage ≥ 70

Cost of prediction



Recapitulation

Accuracy to measure 
costs in prediction

Sequences to model 
system changes

Classifiers to model and 
predict system behaviour 



Thank you


