Mining logs to predict system errors

prof. Barbara Russo

Free University of Bozen-Bolzano, Italy

SwSE - Software and Systems Engineering

Masaryk University, November 10th 2016

Today systems

- Computational power increases
 - (2015) Tianhe-2, China 3,120,000 cores
- The larger the system, the more frequent critical events
 - Lower overall system utilisation
 - Hardware **failure**, software **failure**, and user **errors**

Manage failures ...

- Crashes
 - immediately stop the system
 - easily identifiable (e.g., disk failure)
 - but can originate a large number of events spread across components
- Deviations from the expected output
 - let the system run
 - reveal only at completion of system tasks

To better manage failures ...

... we need information on **system behaviour** and make failure predictions

Systems generate big data

- Part of such data traces the change in behaviour of the system and its subcomponents
- Logging services store state changes of a system in archives, **logs**

Mining logs

• How can we exploit log data to model and predict system behaviour?

Log events

• A log event represents a **change in a system state**

xml log event

<Info

```
TimeStamp="2015-04-08T07:32:37.345"
File="XXX.Control.ObservingModes.ObservingModeBaseImpl"
Line="231" Routine="beginSubscan"
Host="XXX01"
Process="XXX/javaContainer"
SourceObject="XXX/Array005"
Thread="RequestProcessor-35023"
LogId="343355"
Audience="Operator">
<![CDATA[Text message ... here]]>
</Info>
```

System misbehaviour

• Some events can tell about undesirable system behaviour

Error events act as alerts

- Events in error state (error events) act as **alerts of system failures**:
 - Interpretation of event data might be hard
 - Originated from a series of preceding events

Logs can be cryptic

Display logs

🕄 🔞 🐼 🖪

	Tool of the second				1.525				
Date/Time/User	Nu	External ID	Object txt	Sub-object text	Tran	Program	Mode	Log number	
24.05.2011 12:07:59 BARCHET	3	4DDB0C9981D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850570	
24.05.2011 12:08:00 BARCHET	3	4DDB0CA381D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850571	
24.05.2011 12:08:01 BARCHET	3	4DDB0CAE81D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850573	
24.05.2011 12:08:02 BARCHET	3	4DDB0CB881D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850576	
24.05.2011 12:08:02 BARCHET	3	4DDB0CC281D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850577	
24.05.2011 12:08:03 BARCHET	3	4DDB0CCC81D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850578	
24.05.2011 12:08:03 BARCHET	3	4DDB0CD681D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850579	
24.05.2011 12:08:03 BARCHET	3	4DDB0CE081D	IS-U meter rea	Information	EL28		Batch inpu	0000000000002850580	
24.05.2011 12:10:31 BARCHET	6	4DDB4340823	IS-U meter rea	Information	EL28		Dialog pro	0000000000002850607	
24.05.2011 12:12:08 BARCHET	6	4DDAA4A14AE	IS-U meter rea	Information	EL28		Dialog pro	0000000000002850621	
24.05.2011 12:18:57 BARCHET	2.797	000000050110	IS-U billing log	General inform	EAMABI	SAPLEMSG	Batch proc	. 0000000000002850633	
24.05.2011 12:18:57 BARCHET	2.874	000000050110	IS-U billing log	Success Message	EAMABI	SAPLEMSG	Batch proc	0000000000002850634	
24.05.2011 12:18:57 BARCHET	32	000000050110	IS-U billing log	Error	EAMABI	SAPLEMSG	Batch proc	. 0000000000002850635	
🔹 💓 Problem class very important	32								
A 24.05.2011 12:18:57 BARCHET	5	000000050110	IS-U billing log	Warning	EAMABI	SAPLEMSG	Batch proc	. 00000000000002850638	
24.05.2011 12:18:57 BARCHET	9	000000050110	IS-U billing log	Statistical Data	EAMABI	SAPLEMSG	Batch proc	0000000000002850656	
()									

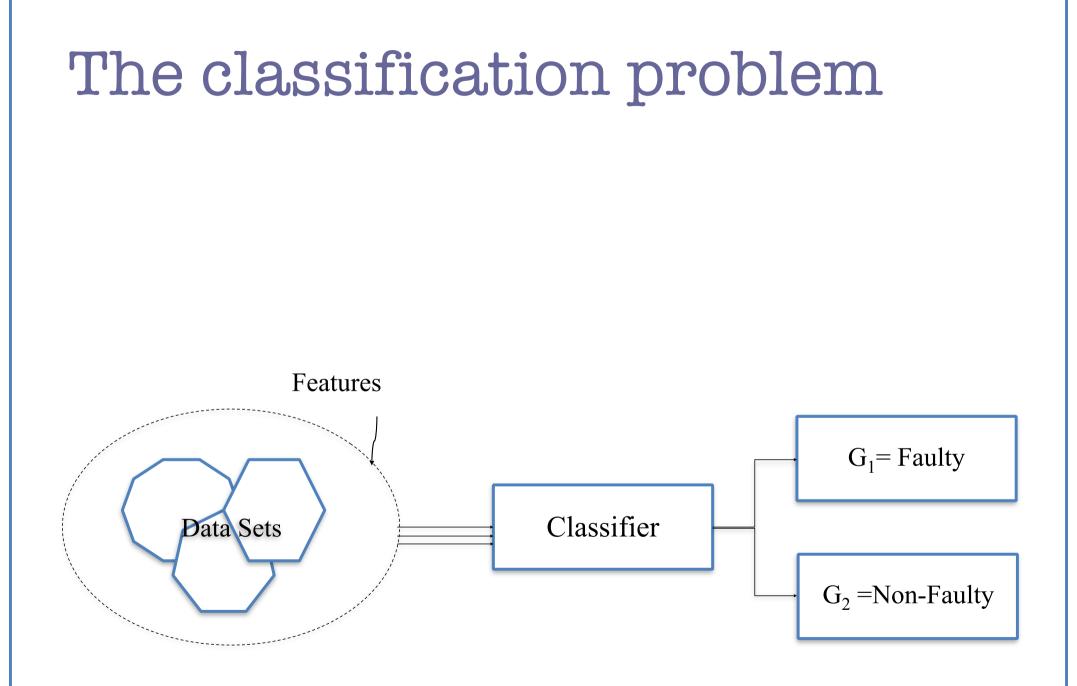
т	Message Text	LTxt	Det.
۲	Bill, order for inst. 400114805 sch.bill.date 31.03.2011 bill.proc. 03 not in selection	2	
۲	Billing was terminated for installation 400114805		
۲	*	2	
۲	Internal error: Error when reading internal table xy_obj-ivb in isu_discnt02	2	
۲	Unexpected termination in variant DISCNT02 in schema KBASM	8	
۲	Unexpected termination in variant ZQUANT26 in schema KBASM	2	2
۲	Billing was terminated for installation 400116324		
۲	*	0	
۲	Bill, order for inst, 400116665 sch.bill.date 28.03.2011 bill.proc. 03 not in selection	2	
۲	Billing was terminated for installation 400116665		
۲	*	0	
0	No operand values were found for operand OEIDT20000	ାହ	

Interpretation

YY-MM-DD-HH:MM:SS NULL ZZZ MYHOST FAILURE xxx exited normally with exit code 0

• Failure, but the program exited cleanly

Interpretation


- If the system administrator was doing **maintenance** on the machine, this message is a harmless artefact of his actions
- If it was generated during **normal machine operation**, this message indicates that all running jobs on the computer were undesirably killed

Operational context

• We need to understand the operational context

Originated from a series of preceding events

• System changes can have introduced errors **much earlier** than an error manifests in logs

Sequences

- **Event sequence:** set of events ordered by their timestamp occurring within a given time window
- A sequence abstraction is a representation of such sequence (e.g., vector) that can be used to feed classifiers (features)

Building features

- A. Isolating sequences
 - Identify sequence length
 - Characterise sequence information
- B. Build sequence abstraction (e.g., a vector)
- C. Build features

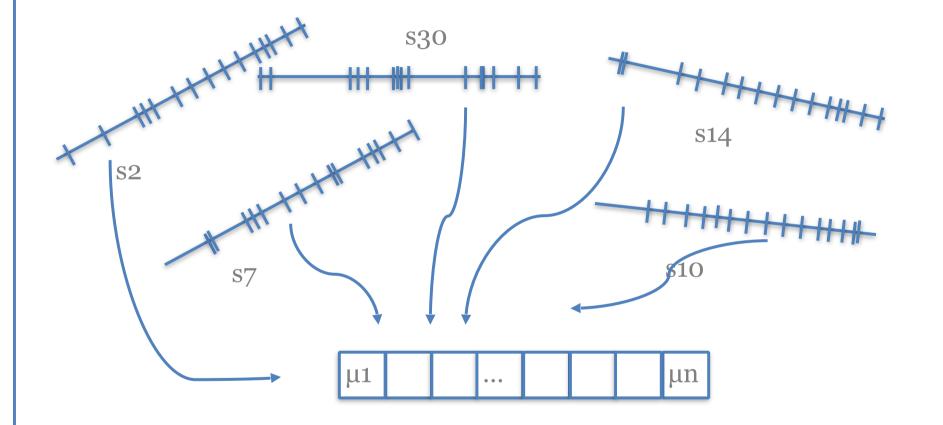
Isolating sequences

Date	Server ID	PC ID	User ID	State	Type	Event Description
2009-03-02 07:05:45 2009-03-02 07:05:46 2009-03-02 07:06:45 2009-03-02 07:06:45 2009-03-02 07:10:20 2009-03-02 07:14:58	$1472 \\ $	36248 36248 26210 26210 5776 5776	$26209 \\ 26209 \\ 1863 \\ 1863 \\ 19039 \\ 19039 \\ 19039$	Information Timer Information Information Error Error	Log In Systems Log In General General Performance	Application LogOn Application Connection Init. Time Stamp Generic Information Generic Error Generic Error

Seq.	Ev.	Date	User	State	Type
s_1		2009-03-02 07:05:45 2009-03-02 07:05:46			Log In Systems
<i>s</i> ₂	$f_2 \\ f_3$	2009-03-02 07:06:45 2009-03-02 07:06:45 2009-03-02 07:10:20 2009-03-02 07:14:58	$1863 \\ 19039$	Information Error	General General

Different length, different types

Sequence abstraction


- μ_i number of the events of type i in a sequence (multiplicity)
- $sv=[\mu_1, ..., \mu_n]$ vector of event multiplicities

Example – sequence abstraction

{General, Log In, Performance, Systems} svl=[0,1,0,1] sv2=[2,1,1,0]

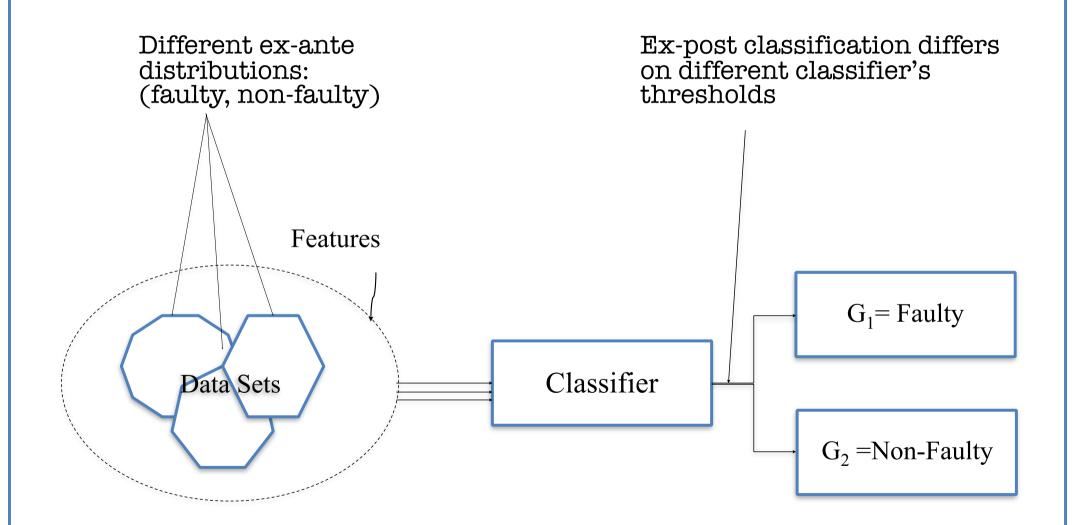
Seq.	Ev.	Date	User	State	Type
s_1		2009-03-02 07:05:45 2009-03-02 07:05:46			Log In Systems
<i>s</i> ₂	-	2009-03-02 07:06:45 2009-03-02 07:06:45 2009-03-02 07:10:20 2009-03-02 07:14:58	$1863 \\ 19039$	Information Error	

Multiple sequences and users

Same length, same types

Features

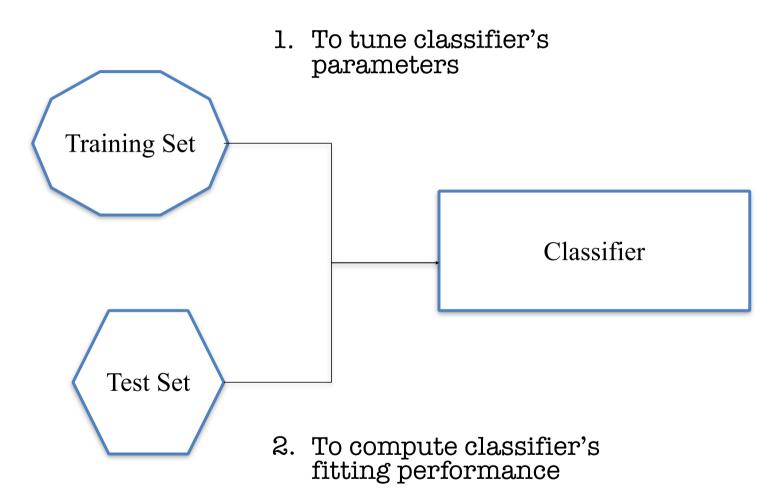
- v= [sv, µ(sv), v(sv)] feature
 - $\mu(sv)$ = **# sequences** mapping onto sv
 - v(sv) = average # of users in sequences mapping onto sv
- ρ(sv) = number of errors in sequences mapping onto sv
- v is an **faulty feature** if at least one event in one sequence is in error state, $\rho(sv)>0$.

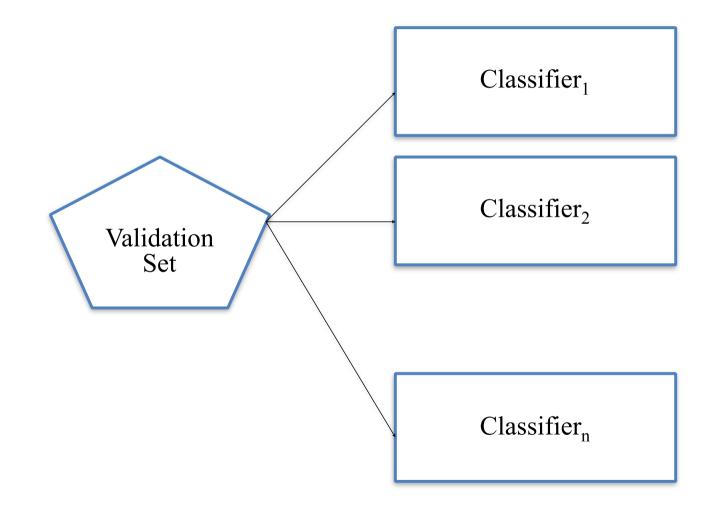

Example - features

$$\begin{aligned} v_1 &= [0,1,0,1;1,1], \ sv_1 &= [0,1,0,1] \\ \mu(sv_1) &= 1, \ v(sv_1) &= 1, \ \rho(sv_1) &= 0 \\ v_2 &= [2,1,1,0;1,2], \ sv_2 &= [2,1,1,0] \\ \mu(sv_2) &= 1, \ v(sv_2) &= 2, \ \rho(sv_2) &= 2 \end{aligned}$$

Seq.	Ev.	Date	User	State	Type
s_1		2009-03-02 07:05:45 2009-03-02 07:05:46			Log In Systems
<i>s</i> ₂	f_2	2009-03-02 07:06:45 2009-03-02 07:06:45 2009-03-02 07:10:20 2009-03-02 07:14:58	$1863 \\ 19039$	Information Error	0

Which models do we use to predict system behaviour?


The classification problem


Parametric classification

- The problem varies depending on how many errors we allow in the system
- c cut-off value, i.e., number of errors in a feature
- Categories:
 - $G_1(c) = \{v = [sv, \mu(sv), v(sv)] \mid \rho(sv) \ge c\}$ faulty
 - $G_2(c) = \{v = [sv, \mu(sv), v(sv)] \mid \rho(sv) < c\}$ non-faulty

Build classifiers on historical data

Compare prediction performance

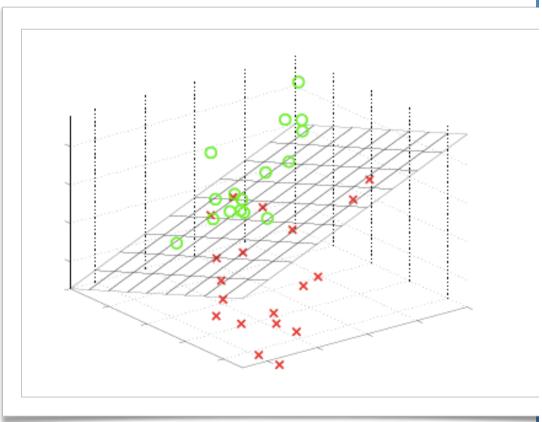
Information Gain

- Did we put too much information in our features?
 - Information Gain selects **feature attributes** that most contribute to the information of a given classification category

$$IG(X) = H(C) - H(C|X)$$
$$H(C) = -\sum_{o \in C} -p(o)log_2p(o)$$

The case study - a telemetry

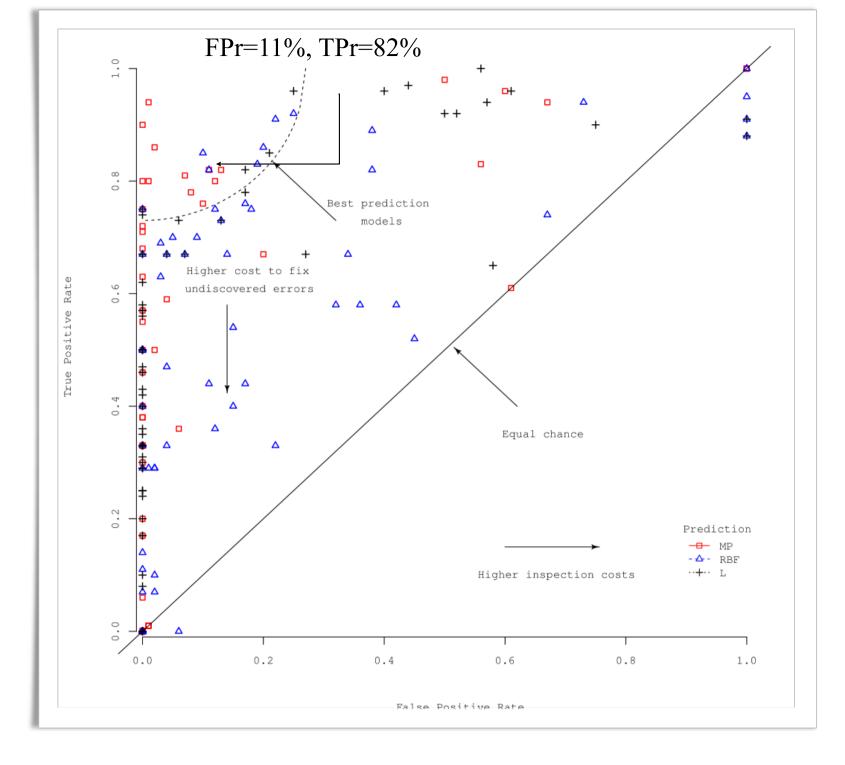
svstem


System applications

ID Application Type

- ST_1 Telemetry Module
- ST₂ Telemetry Module
- ST₃ Telemetry Module
- ST₅ Sw. Resources Mgmt.
- ST₆ Product Sw. Tools Mgmt.
- ST₇ Procurement Sys. Module
- ST_{10} Telemetry Module
- ST_{11} Product Data Mgmt.
- ST_{12} Chain Supply Mgmt. Sys.
- ST_{13} Procurement Sys. Module
- ST_{14} Procurement Sys. Module
- ST_{15} Data Transfer Module
- ST_{17} Product Sensors Mgmt.
- ST_{18} Telemetry Module
- ST_{19} Secondary DB
- ST₂₁ Virtual Disk Service Module
- ST_{23} Manufacturing Execution Sys.
- ST_{25} Virtual Disk Service

Support Vector Machines


- Different kernels
 - Multilayer perceptron
 - Linear
 - Radial Basis Function

Findings

- Best performance at individual application (MP, c=3):
 - 1% false positive rate, 94% true positive rate, and 95% precision
- Best performance across applications averaged over models for c=2,
 - 9% false positive rate, 78% true positive rate, and 95% precision,

What can predictions tell administrators?

Example

ID	Application Type					
ST_1	Telemetry Module					
ST_2	Telemetry Module					
ST_3	Telemetry Module					
ST_5	Sw. Resources Mgmt.					
	Product Sw. Tools Mgmt					
	Procurement Sys. Module					
ST_{10}	Telemetry Module					
ST_{11}	Product Data Mgmt.					
ST_{12}	Chain Supply Mgmt. Sys.					
ST_{13}	Procurement Sys. Module					
ST_{14}	Procurement Sys. Module					
ST_{15}	Data Transfer Module					
ST_{17}	Product Sensors Mgmt.					
ST_{18}	Telemetry Module					
ST_{19}	Secondary DB					
ST_{21}	Virtual Disk Service Module					
ST_{23}	Manufacturing Execution Sys.					
ST_{25}	Virtual Disk Service					

Example - ST6

- Application that manages software tools of cars
 - Pervasive in the telemetry system
- 106 distinct sequences of 10 different event types, 18% multiple sequences, and 89% with more than one user

ST6 - Analysis

• C=**1**

- $G_1(\mathbf{1}) = \{ v = [sv, \mu(sv), v(sv)] \mid \rho(sv) \ge \mathbf{1} \}$
- $G_2(1) = \{v = [sv, \mu(sv), v(sv)] \mid \rho(sv) < 1\}$
- IG reduction from 12 to 7 still including μ and ν

ST_6	Pos% test	$\operatorname{Pos}\%$ validation	Model
t = 1/2	0.4	0.45	MP
t = 1/3	0.39	0.49	MP
t = 1/4	0.49	0.23	MP
t = 1/5	0.45	0.33	MP
avg.	0.43	0.38	MP

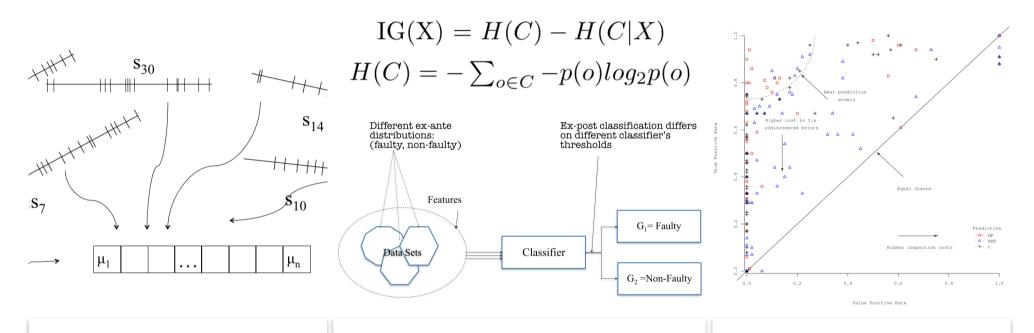
Confusion matrix - MP pred.

	Pred. Pos	Pred. Neg	Total
Pos	$\begin{bmatrix} 14\\82\% \end{bmatrix}^{T}$	Pr 3 18%	$\begin{array}{c} 17\\ 100\%\end{array}$
Neg	2 11%	16 89% Pr	$\begin{array}{c} 18\\ 100\% \end{array}$
Total Percent	$\begin{array}{c} 16 \\ 45\% \end{array}$	$19 \\ 54\%$	$35 \\ 100\%$

Prediction - assumptions

- Behaviour is the same in next three months
- 1000 sequences
- Category balance in future sets is the one of the test set (39%)
 - 390 faulty sequences and 610 non- faulty sequences

In numbers


- 450 (45% * 1000) predicted faulty sequences
- Predicted faulty sequences that have no errors:
 - 67 = 11%*610
- Predicted non-faulty sequences that have an error Pred pos Pred neg Total
 - 70 = 18% * 390

	Pred pos	Pred neg	Total
Pos	82%	18%	100%
Neg	11%	89%	100%
Total	45%	54%	100%

Cost of prediction

- Inspection cost.
 - Wasting time ≥ 67 * average cost to fix one error
- Cost for undiscovered errors.
 - Defect slippage \geq 70

Recapitulation



Sequences to model system changes

Classifiers to model and predict system behaviour

Accuracy to measure costs in prediction

Thank you

