
Lesson 8 – Geometry shaders
Environment mapping

PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka
Fakulta informatiky Masarykovy univerzity

7. 11. 2016

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 1 / 13



Intermezzo – Environment mapping

Reflections: Environment mapping

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 2 / 13



Environment mapping

Source: Wikipedia

−−−−−−−−−−→
ReflectedRay =

−−−−−−−−→
CameraRay − 2 ·

−→
N · dot(

−→
N ,
−−−−−−−−→
CameraRay)

In GLSL: ReflectedRay = reflect(CameraRay ,N)

Assumes N is normalized

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 3 / 13



Task: Implement environment mapping

Task 1: Implement environment mapping in
reflection_fragment.glsl

I Mix the environment reflection with the color of the object

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 4 / 13



Updating the cube map

When the surrounding changes, the cube map with the
environment should be updated.
Six faces of the cube map means:

I six cameras,
I six framebuffer objects
I six times traversing the scene

Already implemented in the code.

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 5 / 13



Layered rendering

Renders into multiple textures at the same time
I Good for cube maps, stereo rendering etc.

Different from attachments of FBOs
I Attachments: Primitives are rasterized at the same places
I Layers: Each layer has different primitives

Renders triangles into layered textures:
I cube maps (6 layers)
I 2D texture arrays
I 3D textures, 1D texture arrays, cube map arrays

Use glFramebufferTexture to attach a layered texture into a
framebuffer

I All textures at all attachments must be layered

Another usage of geometry shaders
New output variable in geometry shaders: gl_Layer

I Specifies the index of the layer into which the primitive is sent

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 6 / 13



Updating the cube map – layered rendering

Updating all faces simultaneously means:
I six cameras available at the same time
I one framebuffer object with all faces
I traversing the scene once
I special vertex and geometry shaders

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 7 / 13



Task: Implement layered rendering

Task 2: Implement layered rendering in
texture_to_cube_geometry.glsl and compare the rendering speed

I Generate 6 triangles (18 vertices), one for each face
I Some vertex data do not change, the are computed in VS

F Pass them through geometry shader without change
I Some vertex data (gl_Position and gl_Layer ) are different for each

face.
F Compute their values in geometry shader

Optional task: Implement the same for the skybox in
skybox_to_cube_geometry.glsl

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 8 / 13



Instanced geometry shader

Problem: the geometry shader processes 18 vertices sequentially,
not in parallel
Possible solution: Instanced geometry shaders

I Similar to instancing
I Geometry shader is run multiple times per each input primitive
I In GS: Instances = Incovations
I Defined in geometry shader:

layout (triangles, invocations = 6) in;
layout (triangle_strip, max_vertices = 3) out;

I Special variable gl_InvocationID:
F Only in geometry shader
F Similar to gl_InstanceID

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 9 / 13



Task: Implement instanced geometry shaders

Task 3: Implement instanced geometry shaders in
texture_to_cube_invocations_geometry.glsl and compare the
rendering speed

I Generate 1 triangle (3 vertices), 6 incovations, one invocation for
each face

Optional task: Implement the same for the skybox in
skybox_to_cube_invocations_geometry.glsl

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 10 / 13



Parallelize even more

Use instancning, i.e. render each object six times.
Everything is computed in vertex shader, all vertices in parallel
Geometry shader only copies the data of each vertex and sets
gl_Layer

Task 4: Implement this in texture_to_cube_instancing_vertex.glsl
and texture_to_cube_instancing_geometry.glsl and compare the
rendering speed

I Option: Implement the same for the skybox in
skybox_to_cube_instancing_vertex.glsl and
skybox_to_cube_instancing_geometry.glsl

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 11 / 13



Parallelize even more, skip geometry shaders

Modern graphics card may set gl_Layer also in vertex shaders,
thus skipping the geometry shader completely

I We need OpenGL extension
GL_ARB_shader_viewport_layer_array, unfortunately, it is not
available on computers in B311

Optional task 5: Implement this in
texture_to_cube_instancing_no_gs_vertex.glsl and in
skybox_to_cube_instancing_no_gs_vertex.glsl and compare the
rendering speed

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 12 / 13



Geometry Shaders Today

not for tessellation, surpassed by tessellation shaders
probably not for culling (not necessary)
expanding a point to a quad (particle systems), compete with
instancing
expanding a line to a quad (grass, hair), in combination with
tessellation shaders
transform feedback (outputs vertices back into VBOs)
layered rendering, instanced geometry shaders

I not enough parallel, compete with instancing, not necessary when
gl_Layer is set in vertex shaders

PV227 – GPU Rendering (FI MUNI) Lesson 8 – Geometry shaders 7. 11. 2016 13 / 13


