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Parallax Occlusion Mapping

Nothing Normal mapping Parallax Occlusion
Mapping
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Basic principle

Basic principle
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Parallax direction

We work in the tangent space (ts) (on the surface of the object)
parallax dir (ts) = ray dir .xy (ts)
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Maximal parallax

ray (ts)
depth scale

=
ray dir (ts)
−ray dir .z (ts)

ray (ws)
depth scale

=
ray dir (ws)
−ray dir .z (ts)

parallax (ts) = ray .xy (ts)
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Texture space

Our space with texture coordinates is a little different from the
tangent space
Directions of tangents and bitangents are the same as directions
of s and t coordinates
The sizes are different

parallax (texs) = ts_to_texs · parallax (ts)
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Sampling

Sample the height texture to find the first intersectoion
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Algorithm

for sample i do
percentage← i/#samples
sample_tex_coord ← tex_coord0 + parallax_texs · percentage
tex_depth← one_minus_sample(height_tex , sample_tex_coord)
ray_depth← percentage
if ray_depth > tex_depth then

break
end

end
Use last percentage to compute the final texture coordinate and
position.
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Task: Implement POM

Task 1: Implement this algorithm
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Task: Improve POM

Task 2: Compute the intersection more precisely

Result: Better result with less samples
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Interaction with other objects
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Task: Improve interaction with other objects

Task 3: Adjust fragment’s depth
I Transform offseted position into clip space (transform in with view

and projection matrices)
I Transform it into normalized device coordinates (divide it with its w)
I Transform it from [−1,1] to [0,1]
I Store its z into gl_FragDepth
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Task: Improve interaction with other objects

Without depth adjustment With depth adjustment

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 13 / 15



Task: Self-shadowing

Task 4: Implement self-shadowing
I Cast another ray from the offseted position to the light
I Check whether there is an obstacle in the height map

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 14 / 15



Task: Self-shadowing

Without self-shadows With self-shadows
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