
Lesson 13
Parallax Occlusion Mapping

PV227 – GPU Rendering

Jiří Chmelík, Jan Čejka
Fakulta informatiky Masarykovy univerzity

12. 12. 2016

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 1 / 15



Parallax Occlusion Mapping

Nothing Normal mapping Parallax Occlusion
Mapping

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 2 / 15



Basic principle

Basic principle

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 3 / 15



Parallax direction

We work in the tangent space (ts) (on the surface of the object)
parallax dir (ts) = ray dir .xy (ts)

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 4 / 15



Maximal parallax

ray (ts)
depth scale

=
ray dir (ts)
−ray dir .z (ts)

ray (ws)
depth scale

=
ray dir (ws)
−ray dir .z (ts)

parallax (ts) = ray .xy (ts)

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 5 / 15



Texture space

Our space with texture coordinates is a little different from the
tangent space
Directions of tangents and bitangents are the same as directions
of s and t coordinates
The sizes are different

parallax (texs) = ts_to_texs · parallax (ts)

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 6 / 15



Sampling

Sample the height texture to find the first intersectoion

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 7 / 15



Algorithm

for sample i do
percentage← i/#samples
sample_tex_coord ← tex_coord0 + parallax_texs · percentage
tex_depth← one_minus_sample(height_tex , sample_tex_coord)
ray_depth← percentage
if ray_depth > tex_depth then

break
end

end
Use last percentage to compute the final texture coordinate and
position.

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 8 / 15



Task: Implement POM

Task 1: Implement this algorithm

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 9 / 15



Task: Improve POM

Task 2: Compute the intersection more precisely

Result: Better result with less samples

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 10 / 15



Interaction with other objects

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 11 / 15



Task: Improve interaction with other objects

Task 3: Adjust fragment’s depth
I Transform offseted position into clip space (transform in with view

and projection matrices)
I Transform it into normalized device coordinates (divide it with its w)
I Transform it from [−1,1] to [0,1]
I Store its z into gl_FragDepth

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 12 / 15



Task: Improve interaction with other objects

Without depth adjustment With depth adjustment

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 13 / 15



Task: Self-shadowing

Task 4: Implement self-shadowing
I Cast another ray from the offseted position to the light
I Check whether there is an obstacle in the height map

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 14 / 15



Task: Self-shadowing

Without self-shadows With self-shadows

PV227 – GPU Rendering (FI MUNI) Lesson 13 – POM 12. 12. 2016 15 / 15


