

Chapter 4: Routing Concepts

Routing & Switching

Presentation_ID

© 2008 Cisco Systems, Inc. All rights reserved

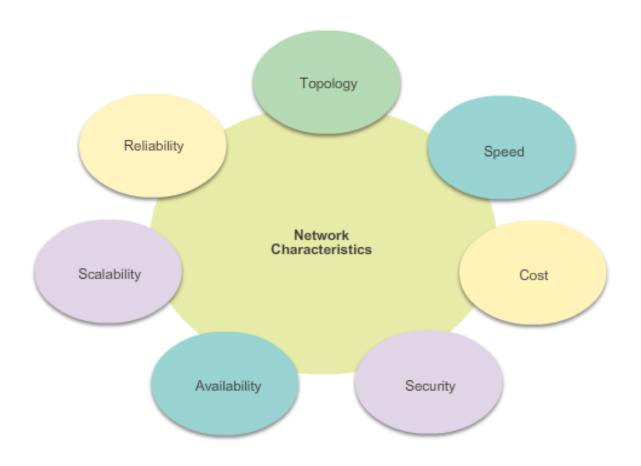
Chapter 4

- 4.0 Routing Concepts
- 4.1 Initial Configuration of a Router
- 4.2 Routing Decisions
- 4.3 Router Operation
- 4.4 Summary

Chapter 4: Objectives

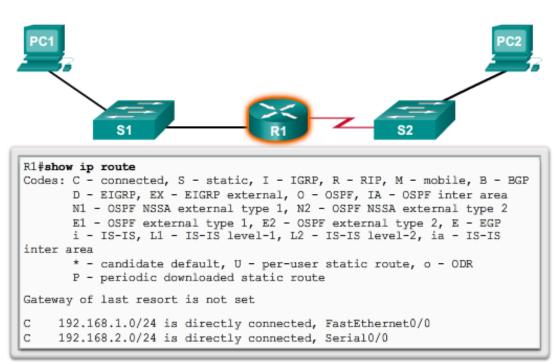
- Configure a router to route between multiple directly connected networks
- Describe the primary functions and features of a router.
- Explain how routers use information in data packets to make forwarding decisions in a small- to medium-sized business network.
- Explain the encapsulation and de-encapsulation process used by routers when switching packets between interfaces.
- Compare ways in which a router builds a routing table when operating in a small- to medium-sized business network.
- Explain routing table entries for directly connected networks.
- Explain how a router builds a routing table of directly connected networks.

.1 1.1 1.


Chapter 4: Objectives (cont.)

- Explain how a router builds a routing table using static routes.
- Explain how a router builds a routing table using a dynamic routing protocol.

Functions of a Router Characteristics of a Network


Network Characteristics

Functions of a Router Why Routing?

The router is responsible for the routing of traffic between networks.

Routers Route Packets

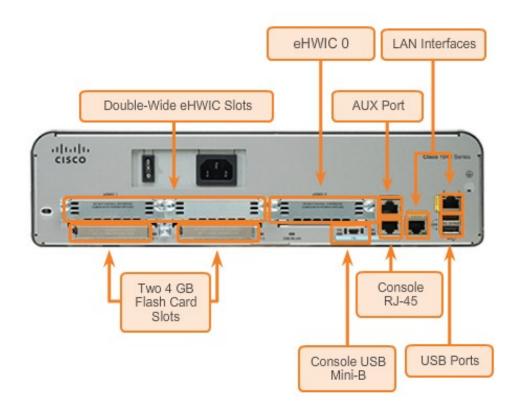
Cisco IOS command line interface (CLI) can be used to view the route table.

Functions of a Router

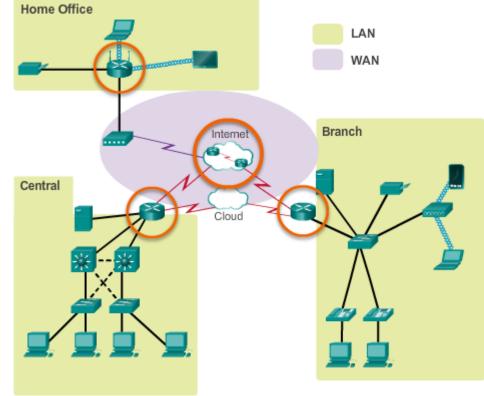
Routers are Computers

Routers are specialized computers containing the following required components to operate:

- Central processing unit (CPU)
- Operating system (OS) Routers use Cisco IOS
- Memory and storage (RAM, ROM, NVRAM, Flash, hard drive)


Memory	Volatile / Non-Volatile	Stores
RAM	Volatile	 Running IOS Running configuration file IP routing and ARP tables Packet buffer
ROM	Non-Volatile	 Bootup instructions Basic diagnostic software Limited IOS
NVRAM	Non-Volatile	 Startup configuration file
Flash	Non-Volatile	IOSOther system files

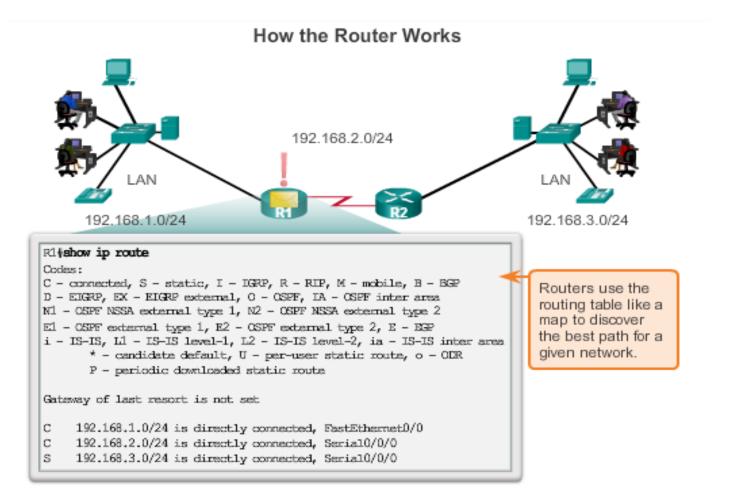
Functions of a Router Routers are Computers


Routers use specialized ports and network interface cards to interconnect to other networks.

Back Panel of a Router

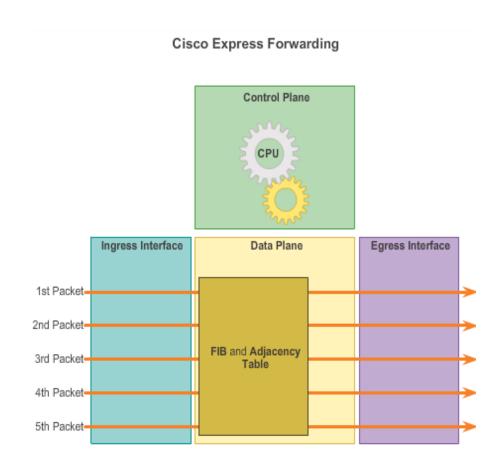
Functions of a Router **Routers Interconnect Networks**

- Routers can connect multiple networks.
- Routers have multiple interfaces, each on a different IP network.

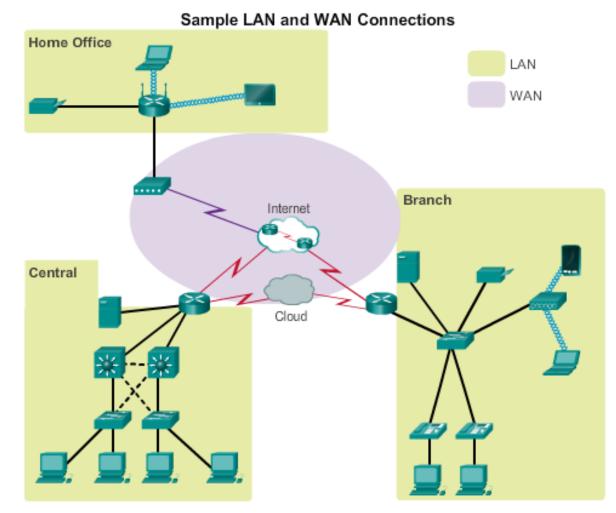


- Routers use static routes and dynamic routing protocols to learn about remote networks and build their routing tables.
- Routers use routing tables to determine the best path to send packets.
- Routers encapsulate the packet and forward it to the interface indicated in routing table.

.1 1.1 1.

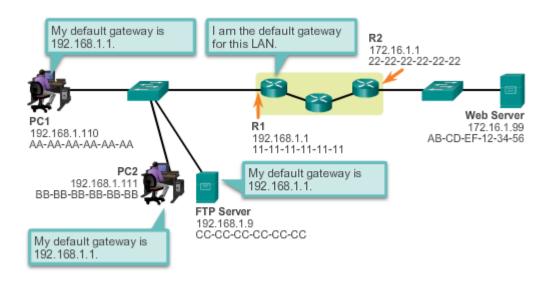


Functions of a Router Routers Choose Best Paths


Functions of a Router Packet Forwarding Methods

- Process switching An older packet forwarding mechanism still available for Cisco routers.
- Fast switching A common packet forwarding mechanism which uses a fast-switching cache to store next hop information.
- Cisco Express Forwarding (CEF) – The most recent, fastest, and preferred Cisco IOS packet-forwarding mechanism. Table entries are not packet-triggered like fast switching but change-triggered.

Connect Devices Connect to a Network

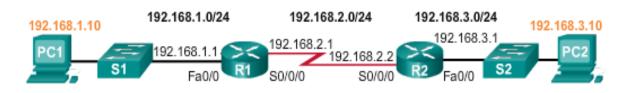

Connect Devices Default Gateways

To enable network access devices must be configured with the following IP address information

- IP address Identifies a unique host on a local network.
- Subnet mask Identifies the host's network subnet.
- Default gateway -

Identifies the router a packet is sent to to when the destination is not on the same local network subnet.

Destination MAC Address	Source MAC Address	Source IP Address	Destination MAC Address	Data
11-11-11- 11-11-11	АА-АА-АА- АА-АА-АА	192.168.1.110	172.16.1.99	



Connect Devices Document Network Addressing

Network Documentation should include at least the following in a topology diagram and addressing table:

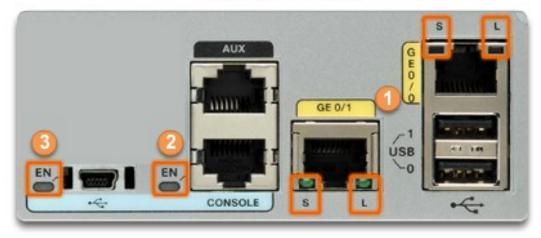
- Device names
- Interfaces

- IP addresses and subnet mask
- Default gateways

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	Fa0/0	192.168.1.1	255.255.255.0	N/A
	S0/0/0	192.168.2.1	255.255.255.0	N/A
R2	Fa0/0	192.168.3.1	255.255.255.0	N/A
	S0/0/0	192.168.2.2	255.255.255.0	N/A
PC1	N/A	192.168.1.10	255.255.255.0	192.168.1.1
PC2	N/A	192.168.3.10	255.255.255.0	192.168.3.1

Connect Devices Enable IP on a Host

Statically Assigned IP address – The host is manually assigned an IP address, subnet mask and default gateway. A DNS server IP address can also be assigned.


- Used to identify specific network resources such as network servers and printers.
- Can be used in very small networks with few hosts.

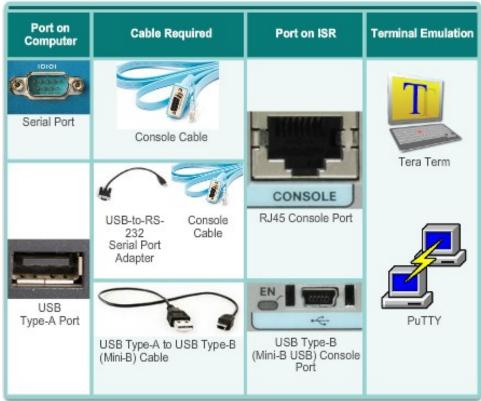
Dynamically Assigned IP Address – IP Address information is dynamically assigned by a server using Dynamic Host Configuration Protocol (DHCP).

- Most hosts acquire their IP address information through DHCP.
- DHCP services can be provided by Cisco routers.

Connect Devices Device LEDs

CISCO 1941 LEDs

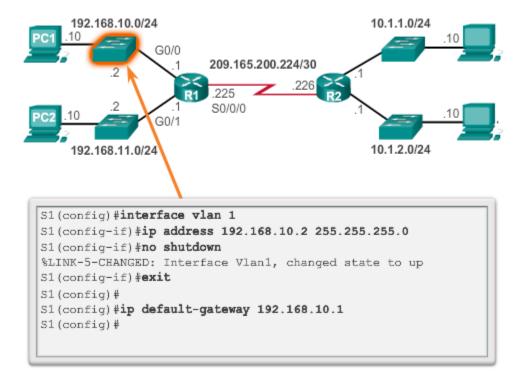
#	Port	LED	Color	Description
1	GE0/0 and	nd S (Speed)	1 blink + pause	Port operating at 10 Mb/s
	GE0/1	1000	2 blink + pause	Port operating at 100 Mb/s
			3 blink + pause	Port operating at 1000 Mb/s
	L (Link)	Green	Link is active	
		Off	Link is inactive	
2	Console	ole EN	Green	Port is active
			Off	Port is inactive
3	USB	USB EN	Green	Port is active
			Off	Port is inactive



Connect Devices Console Access

Console access requires:

- Console cable RJ-45-to-DB-9 console cable
- Terminal emulation software Tera Term, PuTTY, HyperTerminal

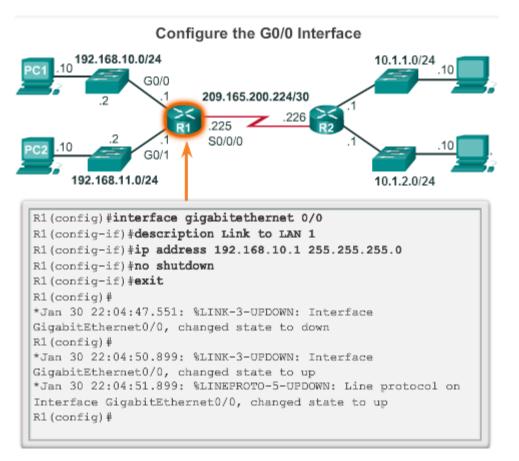


Connect Devices Enable IP on a Switch

- Network infrastructure devices require IP addresses to enable remote management.
- On a switch, the management IP address is assigned on a virtual interface.

Configure the Switch Management Interface

Basic Settings on a Router Configure Basic Router Settings


- Basics tasks that should be first configured on a Cisco Router and Cisco Switch:
- Name the device Distinguishes it from other routers
- Secure management access Secures privileged EXEC, user EXEC, and Telnet access, and encrypts passwords to their highest level

- Configure a banner Provides legal notification of unauthorized access.
- Save the Configuration

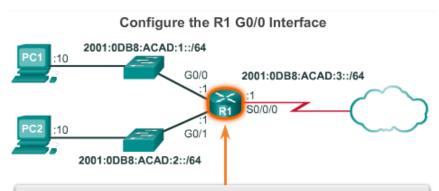
Basic Settings on a Router Configure an IPv4 Router Interface

- To be available, a router interface must be:
- Configured with an address and subnet mask .
- Must be activated using no shutdown command. By default LAN and WAN interfaces are not activated.
- Serial cable end labeled DCE must be configured with the clock rate command.
- Optional description can be included.

cisco.

21

Basic Settings on a Router Configure an IPv6 Router Interface


To configure interface with IPv6 address and subnet mask:

cisco.

- Use the ipv6 address ipv6address/ipv6-length [link-local | eui-64]interface configuration command.
- Activate using the no shutdown command.

IPv6 interfaces can support more than one address:

- Configure a specified global unicast ipv6-address /ipv6-length
- Configure a global IPv6 address with an interface identifier (ID) in the loworder 64 bits - *ipv6-address /ipv6length* eui-64
- Configure a link-local address ipv6address /ipv6-length link-local


```
R1(config)#interface gigabitethernet 0/0

R1(config-if)#description Link to LAN 1

R1(config-if)#ipv6 address 2001:db8:acad:1::1/64

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#

*Feb 3 21:38:37.279: %LINK-3-UPDOWN: Interface

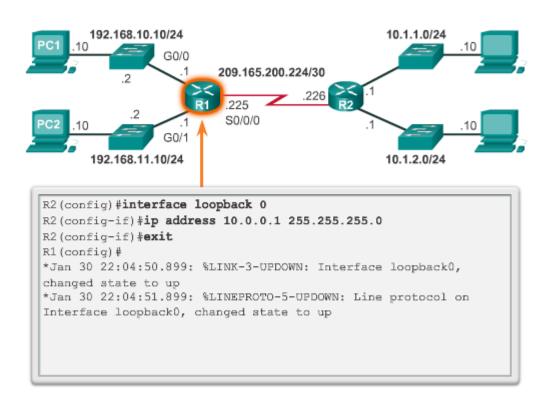
GigabitEthernet0/0, changed state to down

*Feb 3 21:38:40.967: %LINK-3-UPDOWN: Interface

GigabitEthernet0/0, changed state to up

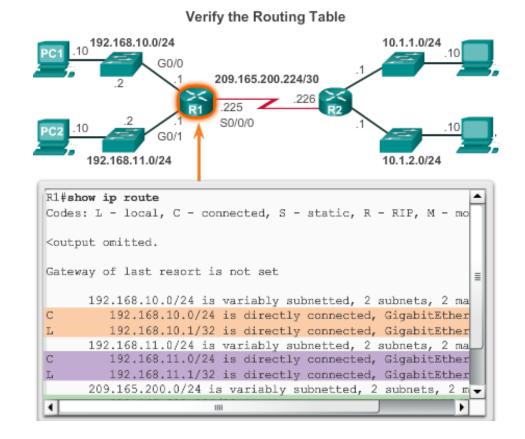
*Feb 3 21:38:41.967: %LINEPROTO-5-UPDOWN: Line protocol on

Interface GigabitEthernet0/0, changed state to up


R1(config)#
```

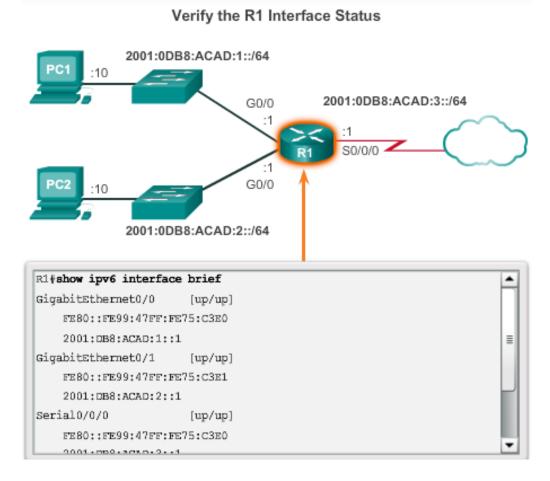
Basic Settings on a Router Configure a Loopback Interface

A loopback interface is a logical interface that is internal to the router:


- It is not assigned to a physical port, it is considered a software interface that is automatically in an UP state.
- A loopback interface is useful for testing.
- It is important in the OSPF routing process.

Configure the Loopback0 Interface

Verify Connectivity of Directly Connected Networks Verify Interface Settings


- Show commands are used to verify operation and configuration of interface:
- show ip interfaces brief
- show ip route
- show running-config
- Show commands are used to gather more detailed interface information:
- show interfaces
- show ip interfaces

Verify Connectivity of Directly Connected Networks Verify Interface Settings

Some of the common commands to verify the IPv6 interface configuration are:

- show ipv6 interface brief displays a summary for each of the interfaces.
- show ipv6 interface gigabitethernet 0/0 displays the interface status and all the IPv6 addresses for this interface.
- show ipv6 route verifies that IPv6 networks and specific IPv6 interface addresses have been installed in the IPv6 routing table.

Verify Connectivity of Directly Connected Networks Filter Show Command Output

Show command output can be managed using the following command and filters:

- Use the terminal length number command to specify the number of lines to be displayed. A value of 0 (zero) prevents the router from pausing between screens of output.
- To filter specific output of commands use the ()pipe character after show command. Parameters that can be used after pipe include:

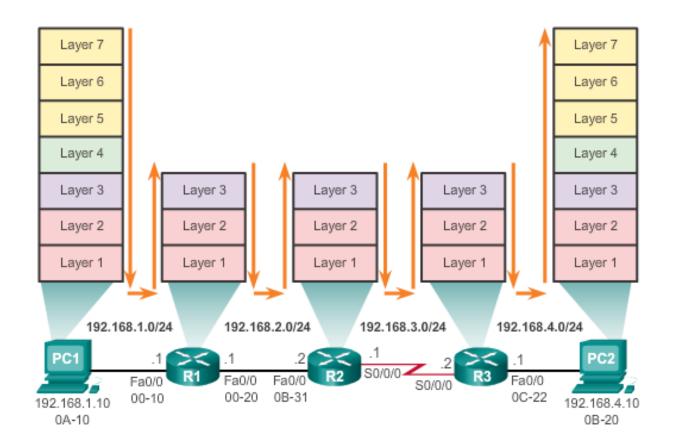
section, include, exclude, begin

R1#show ip interface brief				
Interface	IP-Address	OK?	Method	Status
Embedded-Service-Engine0/0	unassigned	YES	unset	admini
GigabitEthernet0/0	192.168.10.1	YES	manual	up
GigabitEthernet0/1	192.168.11.1	YES	manual	up
Serial0/0/0	209.165.200.225	YES	manual	up
Serial0/0/1	unassigned	YES	unset	admini
R1#show ip interface brief exclude unassigned				
Interface	IP-Address	OK?	Method	Status
GigabitEthernet0/0	192.168.10.1	YES	manual	up
GigabitEthernet0/1	192.168.11.1	YES	manual	up
Serial0/0/0	209.165.200.225	YES	manual	up
▲				•

R1#show ip interface brief				
Interface	IP-Address	OK?	Method	Status
Embedded-Service-Engine0/0	unassigned	YES	unset	administ
GigabitEthernet0/0	192.168.10.1	YES	manual	up
GigabitEthernet0/1	192.168.11.1	YES	manual	up
Serial0/0/0	209.165.200.225	YES	manual	up
Serial0/0/1	unassigned	YES	unset	administ
R1#				
R1#show ip interface brief	include up			
GigabitEthernet0/0	192.168.10.1	YES	manual	up
GigabitEthernet0/1	192.168.11.1	YES	manual	up
Serial0/0/0	209.165.200.225	YES	manual	up
R1#				
4		_		

.1 1.1 1.

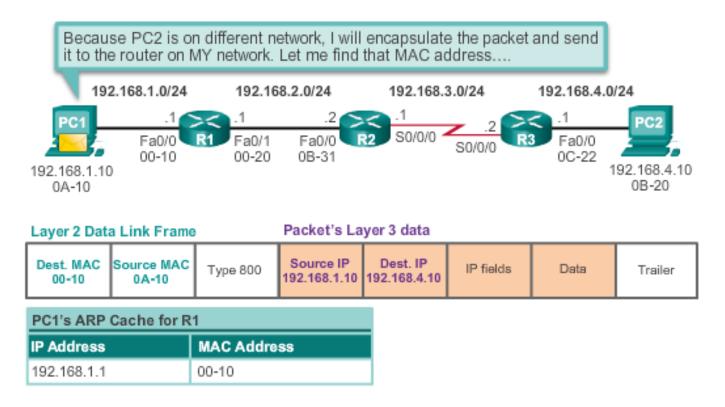
Verify Connectivity of Directly Connected Networks Command History Feature


The command history feature temporarily stores a list of executed commands for access:

- To recall commands press **Ctrl+P** or the **UP Arrow**.
- To return to more recent commands press Ctrl+N or the Down Arrow.
- By default, command history is enabled and the system captures the last 10 commands in the buffer. Use the **show history** privileged EXEC command to display the buffer contents.
- Use the terminal history size user EXEC command to increase or decrease size of the buffer.

cisco.

Switching Packets between Networks Router Switching Functions

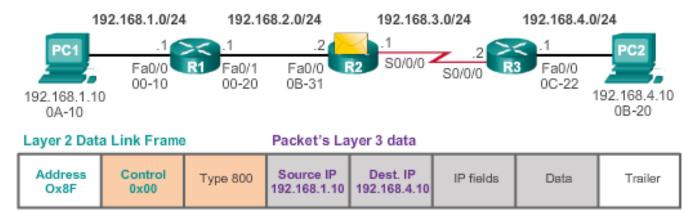

Encapsulating and De-Encapsulating Packets

Switching Packets between Networks Send a Packet

PC1 Sends a Packet to PC2

Switching Packets between Networks Forward to the Next Hop

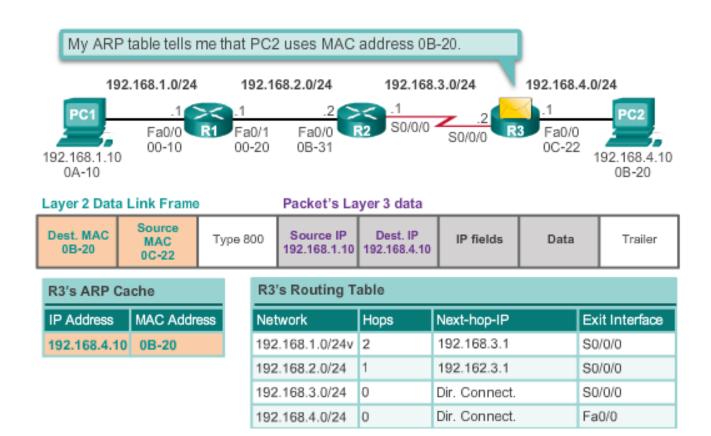
R3 Forwards the Packet to PC2



R1's Routing Table			
Network	Hops	Next-hop-IP	Exit Interface
192.168.1.0/24	0	Dir. Connect.	Fa0/0
192.168.2.0/24	0	Dir. Connect.	Fa0/1
192.168.3.0/24	1	192.168.2.2	Fa0/1
192.168.4.0/24	2	192.168.2.2	Fa0/1

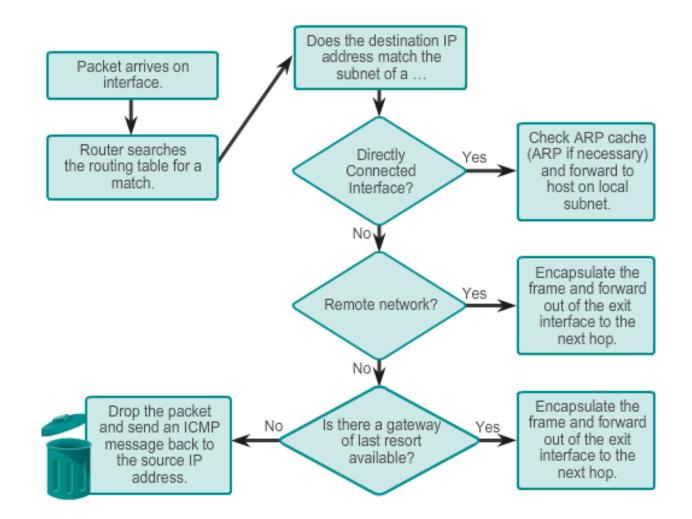
Switching Packets between Networks **Packet Routing**

R2 Forwards the Packet to R3



R2's Routing Table				
Network	Hops	Next-hop-IP	Exit Interface	
192.168.1.0/24	1	192.168.3.1	Fa/0/0	
192.168.2.0/24	0	Dir. Connect.	Fa/0/0	
192.168.3.0/24	0	Dir. Connect.	S0/0/0	
192.168.4.0/24	1	192.162.3.2	S0/0/0	

Switching Packets between Networks Reach the Destination


R3 Forwards the Packet to PC2

Path Determination Routing Decisions

Packet Forwarding Decision Process

Path Determination Best Path

Best path is selected by a routing protocol based on the value or metric it uses to determine the distance to reach a network:

- A metric is the value used to measure the distance to a given network.
- Best path to a network is the path with the lowest metric.

Dynamic routing protocols use their own rules and metrics to build and update routing tables:

- Routing Information Protocol (RIP) Hop count
- Open Shortest Path First (OSPF) Cost based on cumulative bandwidth from source to destination
- Enhanced Interior Gateway Routing Protocol (EIGRP) Bandwidth, delay, load, reliability

Path Determination Load Balancing

When a router has two or more paths to a destination with equal cost metrics, then the router forwards the packets using both paths equally:

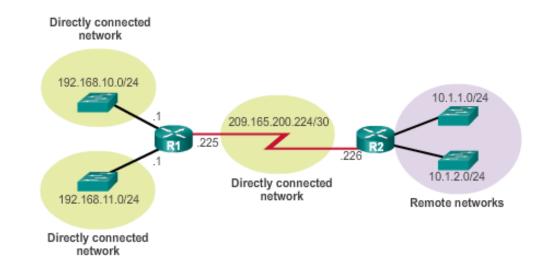
- Equal cost load balancing can improve network performance.
- Equal cost load balancing can be configured to use both dynamic routing protocols and static routes.
- RIP, OSPF and EIGRP support equal cost load balancing.

Path Determination of the route Administrative Distance

If multiple paths to a destination are configured on a router, the path installed in the routing table is the one with the lowest Administrative Distance (AD):

- A static route with an AD of 1 is more reliable than an EIGRPdiscovered route with an AD of 90.
- A directly connected route with an AD of 0 is more reliable than a static route with an AD of 1.

Route Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
External EIGRP	170
Internal BGP	200

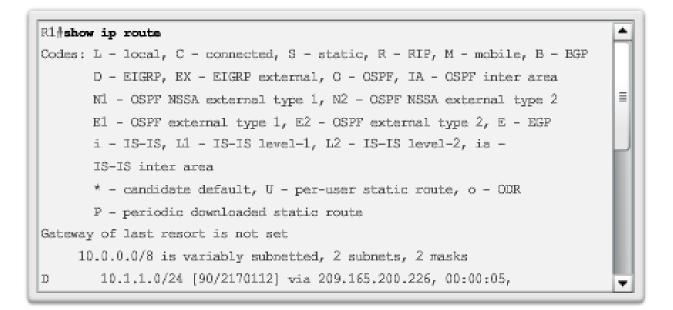

Default Administrative Distances

The Routing Table The Routing Table

A routing table is a file stored in RAM that contains information about:

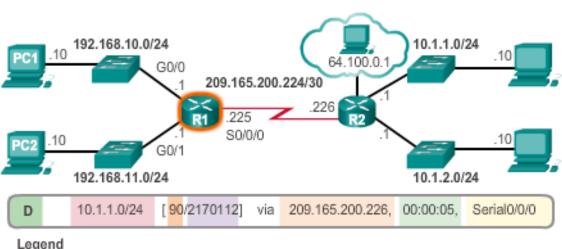
- Directly connected routes
- Remote routes
- Network or next hop associations

The Routing Table Routing Table Sources


The **show ip route** command is used to display the contents of the routing table:

- Local route interfaces Added to the routing table when an interface is configured. (displayed in IOS 15 or newer)
- Directly connected interfaces Added to the routing table when an interface is configured and active.
- Static routes Added when a route is manually configured and the exit interface is active.
- Dynamic routing protocol Added when EIGRP or OSPF are implemented and networks are identified.

The Routing Table Routing Table Sources

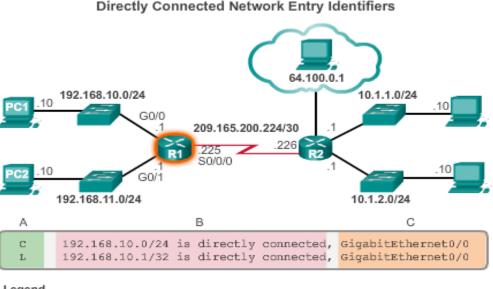


The Routing Table **Remote Network Routing Entries**

Interpreting the entries in the routing table.

Remote Network Entry Identifiers

Legend

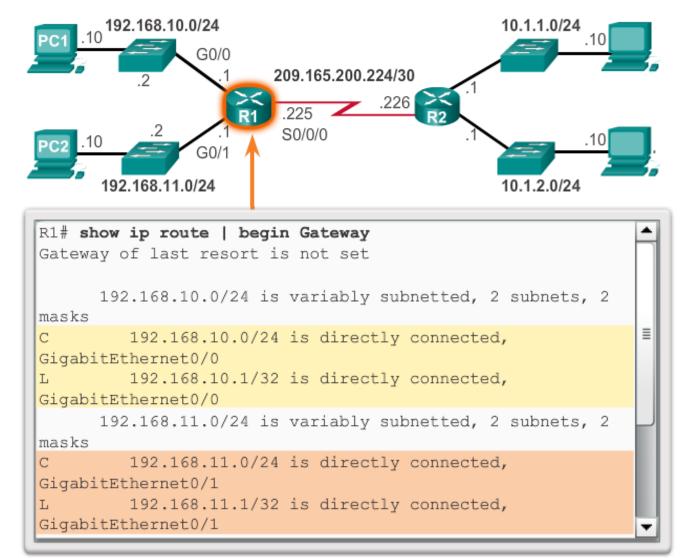

- Identifies how the network was learned by the router.
- Identifies the destination network.
- Identifies the administrative distance (trustworthiness) of the route source.
- Identifies the metric to reach the remote network.
- - Identifies the next-hop IP address to reach the remote network.
 - Identifies the amout of elapsed time since the network was discovered.
 - Identifies the outgoing interface on the router to reach the destination network.

Directly Connected Routes Directly Connected Interfaces

A newly deployed router, without any configured interfaces, has an empty routing table. An active, configured, directly connected interface creates two routing table entries:

- Link Local (L)
- Directly Connected (C)

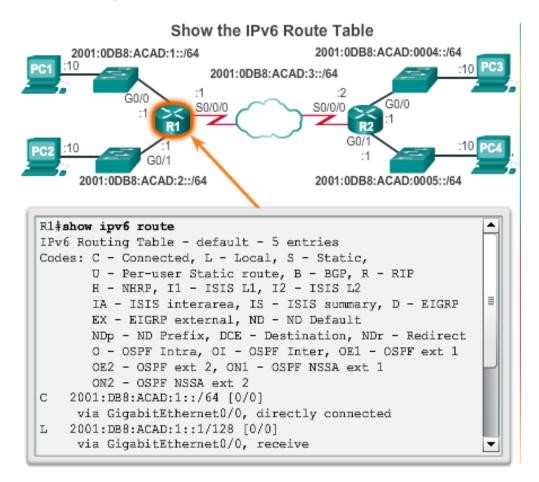
Legend


Identifies how the network was learned by the router.

Identifies the destination network and how it is connected.

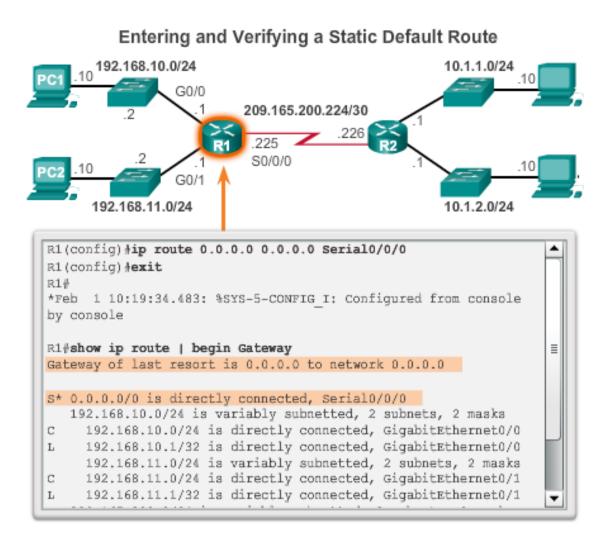
Identifies the interface on the router connected to the destination network.

Directly Connected Routes Directly Connected Example


A routing table with the directly connected interfaces of R1 configured and activated.

Directly Connected Routes Directly Connected IPv6 Example

The **show ipv6 route** command shows the ipv6 networks and routes installed in the routing table.

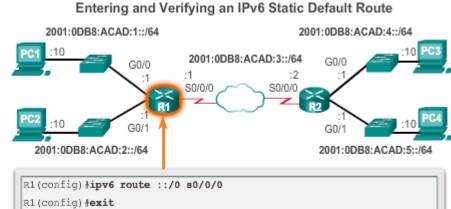


Statically Learned Routes Static Routes

Static routes and default static routes can be implemented after directly connected interfaces are added to the routing table:

- Static routes are manually configured
- They define an explicit path between two networking devices.
- Static routes must be manually updated if the topology changes.
- Their benefits include improved security and control of resources.
- Configure a static route to a specific network using the ip route network mask {next-hop-ip | exit-intf} command.
- A default static route is used when the routing table does not contain a path for a destination network.
- Configure a default static route using the **ip route** 0.0.0.0
 0.0.0.0 {*exit-intf* | *next-hop-ip*} command.

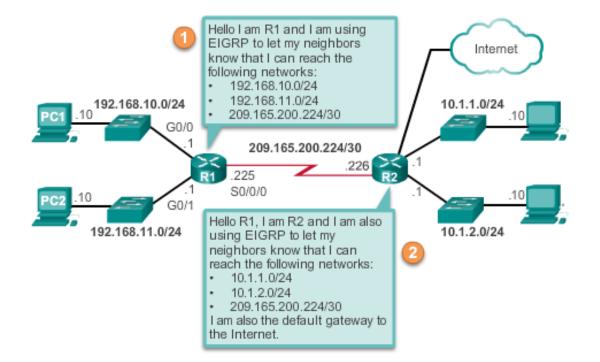
Statically Learned Routes Default Static Routes Example



Statically Learned Routes Static Routes Example

Statically Learned Routes Static IPv6 Routes Example

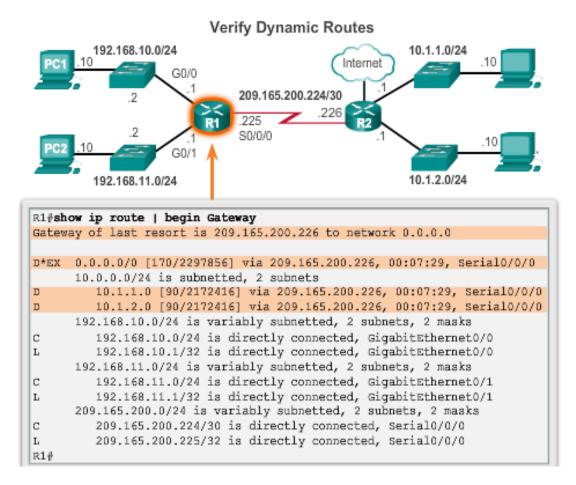
1#		


R

R1#show ipv6 route	-
IPv6 Routing Table - default - 8 entries	
Codes: C - Connected, L - Local, S - Static,	
U - Per-user Static route	=
B - BGP, R - RIF, H - NHRP, I1 - ISIS L1	
I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary,	
D - EIGRP	
EX - EIGRP external, ND - ND Default, NDp - ND Prefix,	
DCE - Destination NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,	
OE1 - OSPF ext 1	
OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1,	
ON2 - OSPF NSSA ext 2	
S ::/0 [1/0]	
via Serial0/0/0, directly connected	
C 2001:DB8:ACAD:1::/64 [0/0]	
via GigabitEthernet0/0, directly connected	

Dynamic Routing Protocols **Dynamic Routing**

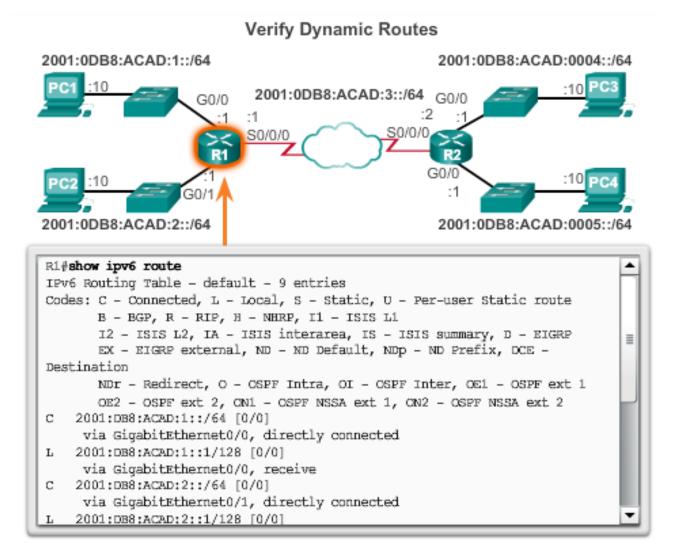
Dynamic routing is used by routers to share information about the reachability and status of remote networks. It performs network discovery and maintains routing tables.


Dynamic Routing Protocols IPv4 Routing Protocols

Cisco ISR routers can support a variety of dynamic IPv4 routing protocols including:

- EIGRP Enhanced Interior Gateway Routing Protocol
- OSPF Open Shortest Path First
- IS-IS Intermediate System-to-Intermediate System
- **RIP** Routing Information Protocol

Dynamic Routing Protocols IPv4 Routing Protocols


Dynamic Routing Protocols IPv6 Routing Protocols

Cisco ISR routers can support a variety of dynamic IPv6 routing protocols including:

- RIPng RIP next generation
- OSPFv3
- EIGRP for IPv6
- MP-BGP4 Multicast Protocol-Border Gateway Protocol

Dynamic Routing Protocols IPv6 Routing Protocols

Chapter 4: Summary

- There are many key structures and performance-related characteristics referred to when discussing networks: topology, speed, cost, security, availability, scalability, and reliability.
- Cisco routers and Cisco switches have many similarities. They support a similar modal operating system, similar command structures, and many of the same commands.
- One distinguishing feature between switches and routers is the type of interfaces supported by each.
- The main purpose of a router is to connect multiple networks and forward packets from one network to the next. This means that a router typically has multiple interfaces. Each interface is a member or host on a different IP network.

Chapter 4: Summary (cont.)

- The routing table is a list of networks known by the router.
- A remote network is a network that can only be reached by forwarding the packet to another router.
- Remote networks are added to the routing table in two ways: either by the network administrator manually configuring static routes or by implementing a dynamic routing protocol.
- Static routes do not have as much overhead as dynamic routing protocols; however, static routes can require more maintenance if the topology is constantly changing or is unstable.
- Dynamic routing protocols automatically adjust to changes without any intervention from the network administrator. Dynamic routing protocols require more CPU processing and also use a certain amount of link capacity for routing updates and messages.

Chapter 4: Summary (cont.)

- Routers make their primary forwarding decision at Layer 3, the Network layer. However, router interfaces participate in Layers 1, 2, and 3. Layer 3 IP packets are encapsulated into a Layer 2 data link frame and encoded into bits at Layer 1.
- Router interfaces participate in Layer 2 processes associated with their encapsulation. For example, an Ethernet interface on a router participates in the ARP process like other hosts on that LAN.
- Components of the IPv6 routing table are very similar to the IPv4 routing table. For instance, it is populated using directly connected interfaces, static routes and dynamically learned routes.

Cisco | Networking Academy[®] Mind Wide Open[™]