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Introduction to Motion Capture Data

Motion Capture (mocap) Data

• Acquired by marker-based/less capturing technologies

• Complex multi-dimensional spatio-temporal data

• 3D space, 25+ body joints, 30+ frames per second

• Input for our research
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Illustration of short cartwheel motion sequence
5 seconds of 120 Hz mocap data represent 55,800 float numbersSimplified human skeleton

with 16 joints
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Applications of Mocap Data

Computer Animation

Finding desired actions for a game or movie 
from a databank of motion recordings

Medicine

Recognizing developmental disabilities and 
movement disorders such as cerebral palsy

Sports

Searching for similar movement patterns to 
analyze athlete performance
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Objective – Subsequence Matching

Objective – to develop an efficient mechanism for 
searching a long data sequence and localizing its parts 
that are similar to a short query sequence
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Long data sequence
(can be a concatenation of multiple sequences)

Query-similar subsequences

…
> 1 hour

…

Query

< 10 seconds
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Subsequence Matching – Challenges

• Actors have different bodies (e.g., child and adult)

• Seemingly same actions can be performed in different
speeds (faster, slower) and styles (e.g., frontal kick vs. side kick)

• Captured data can be noisy or incomplete
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#1 Similarity Measure

Our motion similarity – 4,096D features + L2 metric
• Mocap data are encoded into RGB images [Elias et al., SISAP 2015]

• Features extracted from RGB images using a deep convolutional neural 
network that performs very well on image data
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Rotate arms Stand up Cartwheel
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#1 Similarity Measure – Properties

• Efficiency
– Motions of different lengths have the fixed-size features

– L2 comparison enables a utilization of any metric-based index

• Effectiveness
– Copes well with different speeds and styles of actions

– Elasticity – similarity distances change only slightly when content 
is removed or added (important for sequence segmentation)
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Sensitivity to an added/removed content
Adding a bounded amount of extra content has a minor effect to the search precision. 
A similar trend can be observed when a similar amount of content is removed.

original + 10 % added + 20 % added

≈ ≈
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Subsequence matching:
• Segmentation – short query and long data sequence are partitioned into 

parts (segments) to be meaningfully comparable (to have similar lengths)

• Retrieval algorithm – searching for consequent data segments that are 
similar to consequent query segments

#2 Subsequence Matching
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Query Long data sequence

Query Long data sequence

Query-similar subsequence 
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overlapping on query

overlapping on data

 A lot of query segments – longer queries are more expensive to evaluate

 Grouping relevant segments w.r.t. temporal information

#2 Segmentation – Overlapping on Query/Data
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Overlapping segments Disjoint segments

Query Long data sequence

Query-similar subsequence 

Disjoint segments Overlapping segments
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#2 Segmentation – Naive

Query as a single segment – naive solution
• Query always considered as a single segment

• Data sequence as multi-level overlapping segments
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 Much easier retrieval – one query, no complex post-processing
 Segment level for each query length – a huge number of data segments

Query
Single segment

Long data sequence
Overlapping segments for all possible lengths of queries

Query-similar subsequence 

…
…

…

Level #5

Level #14
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#1 Similarity Measure – Elasticity Property
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#2 Subsequence Matching – Advanced App.

Advanced multi-level segmentation approach

• Segment lengths and number of levels depend on
– Query length limits (lmin, lmax)

– Elasticity of the similarity measure (quantified by cf parameter)

Segmentation example for elasticity cf = 20 %:
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#1 (l1 = 125 frames)

#2 (l2 = 187 frames)

#3 (l3 = 280 frames)

#4 (l4 = 420 frames)

Query length
limits [100, 500]

lmin = 100 lmax = 500

Segment levels
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Level 2

#2 Subsequence Matching – Advanced App.

• Only a single query-relevant level considered for search
– For arbitrary data subsequence of lmin < length < lmax, there exists a 

single segment that overlaps from at most 100 – cf [%]

• The k most similar segments presented as the query result
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Level 2

Query-similar subsequence 

…

Level 3

…

Level 3

Query
Single segment

Long data sequence
Segmentation levels with overlapping segments
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Segmentation in Numbers

Example:

• Data sequence of length 400,000 frames (120 Hz ~ 1 hour)

• Query length limits: lmin = 100 and lmax = 500 frames

• Example query length: 300 frames (120 Hz ~ 3 seconds)
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Total # of data 
segments

Data 
replication

Max # of 
comparisons

Baseline – overlap on query 4,000 1 800,000

Baseline – overlap on data 400,000 100 1,200,000

SISAP ´16 – naive 160,000,000 120,000 400,000

SISAP ’16 – advanced 7,720 20 1,430
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Experimental Evaluation – Advanced Approach

• HDM05 Dataset: 68-minute long data sequence
– 120 Hz sampling, 31 body joints

– Ground truth: 1,464 short subsequences in 15 categories (~queries)

• Subsequence retrieval using k-NN queries:
– lmin = 41 frames (340ms), lmax = 2,063 frames (17.2s)

– Different settings of elasticity cf = {10%, 20%, 30%, 40%, 50%}
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cf
[%]

# of 
levels

# of levels Feature extract.
time [min]

Sequential 
scan [ms]

Precision

total 1st level k = 1 k = 5

10 18 631,746 111,774 263.2 447 87.30 84.37

20 9 150,971 51,230 62.9 205 86.75 84.13

30 6 66,972 31,526 27.9 126 86.89 82.98

40 5 37,345 21,955 15.6 88 85.79 82.65

50 4 23,669 16,393 9.9 66 84.43 81.99
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Conclusions

Advanced subsequence matching in mocap data
• Query always considered as a single segment

• The elasticity property of the similarity measure enables to dramatically 
reduce the number of data segments

Efficiency
• Searching the 68-minute sequence sequentially takes 205ms

• By applying the PPP-Codes [Novak et al., TLDKS 2016] to index data 
segments at each level, search times can be further decreased by two 
orders of magnitude

– Approximate search within a 121-day long data sequence in 1 second

Online demo: http://disa.fi.muni.cz/mocap-demo/
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