Searching in Sparse Spaces

via Random-Projection Pivots

Background

- Sparse vector spaces
 - vectors $v = (v_1, ..., v_M)$ of dimensionality M where just "**a few**" dimensions are **non-zero**
 - typically represented by a **list of pairs** (dim, value) for the non-zero dimensions $v = \{ (d_i, v_i) \}$
- (Dis)similarity measures
 - o common feature of majority of commonly used measures sim(u, v): They consider only those **dimensions** that are **non-zero in both** vectors u and v
 - e.g. all measures that are based on inner product (doc product)

Example of Spaces: IR

There are many such spaces widely used in Information Retrieval (IR)

```
t - a term from a dictionary of size M
```

d - document (sequence of terms)

q - *query* (sequence of terms)

 $tf_{t,d}$ - term frequency (number of occurrences of term t in document d)

 df_t - document frequency of term t (number of documents containing term t)

$$idf_t = log \frac{N}{df_t}$$
 - inverted document frequency

 $\mathsf{tf}\text{-}\mathsf{idf}_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$ - a way to weight terms t in documents (and query)

IR definitions & notation from: C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval. Cambridge University Press, 2008.

Vector Space Model in IR

Vector space model - documents and queries represented as sparse vectors

- ...of tf-idf scores (and variants, see below)
- Similarity by cosine $sim(d_1, d_2) = \frac{\vec{V}(d_1) \cdot \vec{V}(d_2)}{|\vec{V}(d_1)||\vec{V}(d_2)|}$
 - o dot product: $\vec{x} \cdot \vec{y} = \sum_{i=1}^{M} x_i y_i$
 - ∇ Euclidean length: $\sqrt{\sum_{i=1}^{M} \vec{V}_i^2(d)}$ $\vec{V}(d) = \vec{V}_1(d) \dots \vec{V}_M(d)$
- For normalized vectors

$$\vec{v}(d_1) = \vec{V}(d_1)/|\vec{V}(d_1)|$$

$$sim(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$

Variants of tf-idf Scoring

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log rac{N}{\mathrm{d} \mathrm{f}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/ <i>u</i> (Section 6.4.4)
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/CharLength^{\alpha}$, $\alpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

so called SMART notation: ddd.qqq e.g. lnc.ltc

but always they are sparse vectors with (normalized) dot product

Probabilistic Ranking Models

- Standard in modern IR
- Theory behind: Estimation of the **probability** that a document d_i is relevant to a query q (estimation of RSV Retrieval Status Value)
 - Weeightbiegiandith a niomphalizatiriongfactors

 $RSV_d = \sum_{t \in a} \left[\log \frac{N}{\mathrm{df}_t} \right]$

 L_d and L_{ave} are length of doc d and average doc length, resp. k_1 , k_3 and b are tuning parameters

This is famous **BM25** weighting scheme

$$ext{tf}_{t,d}$$

$$ext{} ext{} ext$$

The core idea is still a "dot product" in a sparse space

Objectives

- Efficient and accurate kNN retrieval in sparse spaces
 with (dis)similarity functions based on dot product (non-zero dimensions)
- If the query is very short (1-3 terms), the best approach is inverted file
 - o for every term t, keep a posting list of (coef, docid) of all documents containing term t
 - \circ given query q, scan posting lists of query terms and calculate individual document scores
 - o if fact, better evaluation algorithms are used: static/dynamic pruning, block-WAND, etc.
- For longer queries (query expansion, query-by-document), other solutions might be more efficient
- 2. There are more complex sparse representations (+ similarities) for which the posting lists for the query terms might not contain all relevant docs
 - bridge the vocabulary mismatch: IBM Model1 coefficients, word embeddings

From IR Scores to Distance Spaces

```
u \cdot v = cos(u, v) \cdot |u| \cdot |v|

\delta(u,v) = 1 - cos(u, v) - not metric (but gives the same ordering as cos(u,v))

\delta(u,v) = arccos(cos(u, v)) - angular distance
```

But, we don't need triangle inequality for approximate search

... in fact, for some indexes, we **don't need** to explicitly express a **distance**

Pivoting Techniques

- Pivoting techniques:
 - pre-select some pivots/anchors/reference objects (reference documents)
 - calculate (dis)similarity between objects (documents/queries) and the pivots
 - o index & search data based on the the data-pivot similarities
 - PP-Index, M-Index, MI-File, PPP-Codes, NAPP, etc.
- NAPP inverted index (Neighborhood APProximation):
 - o approximate the position of object x by set P(x) = K closest pivots to x (w/o their order)
 - ∘ given query q, the **candidate set** are all objects x s.t. $|P(x) \cap P(q)| \ge s$ (share at least s pivots)
 - build an **inverted index**: for each pivot p keep list of objects x for which $p \in P(x)$
 - use well-known IR algorithm(s) to identify the candidate set & then refine

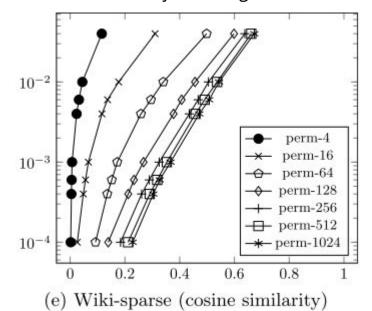
[E. S. Tellez, E. Chavez, and G. Navarro, "Succinct nearest neighbor search," Inf. Syst. 7 (38)]

Pivoting Techniques in Sparse Spaces

Naidan, Boytsov & Nyberg tried **several** kNN approaches to **different** (non-metric) **spaces**

All tested techniques **failed** on the dataset with tf-idf scores from 4.2M Wikipedia pages with cosine similarity

[B. Naidan, L. Boytsov, and E. Nyberg, "Permutation Search Methods are Efficient, Yet Faster Search is Possible," in Proceedings of VLDB 2015] recall of 10-NN vs. fraction of accessed objects using NAPP



Basic Insight into the Problem

- In sparse spaces, two random objects do not share many non-zero dims
- ...and if they do, these are "very common dimensions" (terms with low idf)
- Analysis of the wiki-sparse dataset (4.2M documents with tf-idf scores):
 - o dictionary size *M* (dimensions): 100.000 Avg. number of non-zero dimensions: 156.0
 - number of overlapping dimensions = # of dimensions (terms) in both vectors: 3.81
 - o number of overlapping dimensions after removing 1% of terms with lowest IDF: 0.95
 - o analyze how many dimensions are between object and all *K* closest pivots
 - o analyze *how much energy* is between an object and its closest pivots
 - "how much of the vector" is actually used for indexing

The Idea

- Generate pivots so that they use more information from the data:
- 1. Select pivots as **long documents**
- 2. **Merge** (put together) random **documents**
 - the same but filtering out terms with lowest IDF
- 3. **k-means** and then **merge** documents in the clusters
- random dimensions!
 - each pivot = given number of randomly chosen dimensions (terms from the dictionary)
 - each of these selected dimensions is set to 1 (and then the vector is normalized)
 - surprisingly good results

Already Done

- first analysis and experiments
- proposal of an efficient **structure** to calculate similarity between an object and *all pivots at once*
 - keep a hash map for all dimensions
 - o for each dimension, store a list of pivots that contain this dimension
 - given an object vector, iterate over its non-zero dimensions in the map and accumulate the similarity to all pivots
- efficient implementation within Leo & Bileg NMSLIB C++ library
- experiments and results used in
 - [1] L. Boytsov, D. Novak, Y. Malkov, and E. Nyberg, "Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search," in CIKM, 2016, pp. 1099–1108.
 - without any details about the pivot-selection technique

What's Next?

- Theory:
 - o **estimate** the number of dimensions shared between a vector and pivot/pivots/closest pivots
 - derive probability-based properties why our approach works :-)
 - confirm these estimations experimentally
- Representations find out how much information we loose when
 - we transform sparse vectors to full (our) pivot rankings + Spearman footrule (Kendall)
 - we transform to pivot ranking prefixes + modified Spearman (M-Index style)
 - we forget the order of the pivot ranking + Jaccard coefficient (NAPP style)

What's Next?

- Effectiveness/efficiency experiments:
 - o 3 (or 4) datasets, 2-3 representations (similarity spaces), queries of different lengths
- Baselines to compare with:
 - Lucene-like inverted index (different optimizations like WAND, block WAND, etc.)
 - Falconn: current best LSH technique for cosine distance
 [Andoni, Indyk et al. Practical and Optimal LSH for Angular Distance. NIPS 2015]
 - o k-NN graph (proximity graph): namely, SW-graph

Advantage of our approach: "works" for any (dis)similarity

- o indexing is based directly on the similarity function
- Write and submit a paper

Thanks for your attention. Questions, comments, please...