Exercise 1 Prove that the following formulae are valid using Natural Deduction. (a) φ ∧ ψ → ψ ∧ φ (b) ψ → ((φ ∧ ψ) ∨ ψ) (c) (¬ψ → ¬φ) → (φ → ψ) (d) φ → ¬¬φ (e) ((φ ∧ ψ) ∨ ψ) → ψ (f) ¬¬φ → φ (g) φ ∨ ¬φ (h) ¬(¬φ ∧ ¬ψ) → (φ ∨ ψ) (This one is tricky.) (i) φ → ∃xφ (j) ∀xφ → φ (k) ∀xR(x, x) → ∀x∃yR(f (x), y) (l) ∃x(φ ∨ ψ) → (∃xφ ∨ ∃xψ) (m) (∃xφ ∨ ∃xψ) → ∃x(φ ∨ ψ) (n) ∀xφ ∧ ∀xψ → ∀x(φ ∧ ψ) (o) ∀x(φ ∧ ψ) → ∀xφ ∧ ∀xψ (p) ∀x∀y[φ(x) ↔ φ(y)] ∧ ∃xφ(x) → ∀xφ(x) Exercise 2 Prove that the formulae from Exercise  are valid using tableau proofs. Exercise 3 Find all consistent sets for the following sets of rules. (a) α α ∶ β δ α ∶ γ δ (b) α α ∶ β γ β (c) α α β γ α ∶ γ β Exercise 4 For each subset Φ ⊆ ℘({α, β}), try to find a set of rules R such that Φ is the set of all consistent sets for R.  Exercise 5 Derive the following additional rules from the basic ones of the Natural Deduction calculus. Γ Ȃ ¬¬φ Γ Ȃ φ Γ Ȃ φ Γ, ∆ Ȃ φ Γ, ¬φ Ȃ ¬ψ Γ Ȃ ψ → φ Γ, ¬φ Ȃ ψ Γ Ȃ φ ∨ ψ Exercise 6 Find a rule for proofs by induction. Ȃ Ȃ ∀xφ(x) where φ(x) is a formula talking about natural numbers. 