
7. Orthogonal range searching

Introduction. In this chapter we show that many types of questions about data in a
database can be interpreted and answered geometrically. If each entry in a database
contains d different data, we can interpret these data as coordinates in the space Rd,
and we can imagine the database as a set of points in Rd. Often, we can meet a task
to find those items in the database whose individual data are within a specified range.
This leads to the geometric task of orthogonal searching.

Formulation of a general orthogonal search task in Rd. In Rd there is a set of
points P . The task of orthogonal range searching consists in finding a suitable search
structure made just for this set which enables us to find quickly all points from P lying
inside a d-dimensional axis-parallel box

[x1, x
′
1]× [x2, x

′
2]× · · · × [xd, x

′
d]

for any choice of intervals [x1, x
′
1], [x2, x

′
2], . . . , [xd, x

′
d].

FIGURE 7.1 The task of orthogonal range searching

We will deal with two ways how to solve this task. The appropriate search structures
are called kd-trees and range trees. We start with dimension 1 in wchich both methods
coincide.

1-dimensional range searching. Let P = {p1, p2, . . . , pn} be a set of real numbers.
To order them according to the size we can construct a balanced binary tree T with
leaves corresponding to these numbers. For given numbers x and x′, x ≤ x′, we look
for all the numbers of the set P that lie in the interval [x, x′]. In the tree T , each node
will hold the value of the largest leaf of its left subtree. Then in the tree every number
x determines a path from the root to a leaf that is specified by the rule that from a
given node we go left if x is less than or equal to the value at that node, and we go
right in the opposite case.

The given numbers x and x′ specify two paths that have a common part. The last
node of this common part is called a split node.

FIGURE 7.2 A split node for x = 1, 5 and x′ = 3, 5. The path of x is marked in
red, the path of x′ in green.

Please replace Czech Štěṕıćı uzel by English Split node.

For a node ν of the tree T let lc(ν) and rc(ν) denote its left and right child, respec-
tively. A pseudocode for finding a split node is as follows:

PSEUDOCODE FindSplitNode from pseudo.pdf, page 22

The pseudocode for finding the points from the set P located in the interval [x, x′]
finds the split node first, and then continues to look for the position of the numbers x
and x′ among the leaves of the tree T .

PSEUDOCODE 1DRange Query from pseudo.pdf, page 23

If in the interval [x, x′] there are k number of the set P , the time needed to be listed
is O(log n+ k).

1

2

kd-trees in dimension 2. Now let P = {p1, p2, . . . , pn} be a set of points in the
plane R2. To simplify and clarify geometric interpretation we assume that the point
of P do not have the same either x or y-coordinate. In time, we will show how to
remove this limiting assumption.

The kd-tree for the set P will have the geometric form of a division of the plane
into regions by means of vertical and horizontal lines, half-lines and segments. The
division is made in such a way that each region contains just one point of the set P .
We describe this geometric division using a balanced binary tree called kd-tree.

First we find a point of the set P with the property that the vertical line l1 passing
this point divides the set P into two parts P1 and P2 such that the number of elements
of the left part P1 is the same or by one bigger than the number of elements of the
right part P2. In the set P2 we include the points to the right of the line l1, the other
points are in the set P1. This means that the x-coordinate of a point through which
the vertical line l1goes will be the median of the x-coordinates of the points of P . In
the kd-tree this geometric step will correspond to the selection of a root in which we
will hold the vertical line l1 together with its x-coordinate. The path from the root to
left means a transition to the set P1, the path to right a transition to P2.

In the next step, we analogously divide both sets of P1 and P2 with the horizontal
lines l2 and l3 into two sets. The lower one contains a point on the splitting horizontal
half-line and it has the same number of points or one point more than the upper
set. In the kd-tree, lines l2 and l3 will match the left and right child of the node l1,
respectively.

The obtained sets - now they are four - are again divided alternately by vertical
and horizontal lines into sets whose numbers of elements differ by no more than one.
We repeat this procedure as long as there is only one point in the obtained sets. The
whole procedure is captured in the following animation.

ANIMATION Creating a kd-tree for a set P = {p1, p2, . . . , p10}.

After finishing, we get a balanced binary tree, where the nodes on even level store
the x-coordinate of the corresponding vertical line, and the nodes on odd level store
the y-coordinate of the corresponding horizontal line.

FIGURE 7.3 kd-tree for the set P from the animation.

kd-tree can be constructed PSEUDOCODEically using the recursive procedure de-
scribed by the following pseudocode:

PSEUDOCODE BuildKdTree from pseudo.pdf, page 24

Lemma 7.1. kd-tree for a set of n points in the plane uses O(n) storage and can be
constructed in O(n log n) time.

Proof. Every node and leaf in a binary tree uses O(1) storage and this means that the
total amount of storage is O(n). The median of n numbers can be found in O(n) time.
However, such algorithms are rather complicated. Therefore, it is better to rearrange
the points of the set P according to the x and y-coordinates first, which will take the
time O(n log n). Then finding a median of a subset will be linear in the number of

3

elements of that subset. Denote T (n) the running time of the algorithm for n points
on the input. We get a recurrent formula

T (1) = O(1), T (n) = O(n) + 2T (n),

which has the solution T (n) = O(n log n). �

Searching using kd-tree. To describe a searching in kd-tree, we need the notion
of the region of a node ν. Let the path from the root to a node ν in a kd-tree is
formed by nodes ν1, ν2, . . . , νk, ν. Let a node νi be determined by a line li. Then
the region of the node ν is the intersection of corresponding half-planes determined by
the boundary lines l1, l2 to lk. Which of the two half-planes corresponding a line we
take is given by the path to ν. If the path from a node on the even level goes left, we
take the closed left half-plane, if it goes right we choose the open right half-plane. If
the path from an odd level node goes left we take the closed lower half-plane, in the
opposite case we choose the open upper half-plane.

FIGURE 7.4 The region of the node ν.
Please, replace Czech by English Region of ν in the picture.

If a node ν is determined by a line l, then the definition of the region can be
recurrently described in this way:

region(root) = R2,

region(lc(ν)) = region(ν) ∩ left(l),

region(rc(ν)) = region(ν) ∩ right(l),

where the line l divides the plane into the closed left and (or lower) half-plane left(l)
and the open right (or upper) half-plane right(l).

Given a rectangle R = [x, x′] × [y, y′] in the plane, we want to find all points from
P , which lie in it. For the region of a node there are the following options:

(1) The whole region lies in R. Then all points from this region lie in R.
(2) The intersection of the region with the rectanle R is empty. Then there is no

point from the region in R.
(3) The region has nonempty intersection with R, but it is not its subset. In this

case we have to deal with regions corresponding to the left child and the right
child of our node.

The following picture captures regions of all three types.

FIGURE 7.5 Regions of type (1) are green, of type (2) blue and of type (3) white.

The principle described above is realized in the following psedocode:

PSEUDOCODE Search KdTree from pseudo.pdf, page 25

Without proof, we will state the following statement about the running time of
searching algorithm using kd-tree.

Lemma 7.2. Let a set P in the plane have n points and let k of them lie in a reclangle
R. Then the searching algorithm using kd-tree has the running time

O(
√
n+ k).

4

So far we have done everything provided that any two points of the set P have
both coordinates x and y different. Now we will show how this unpleasant assumption
can be removed. Instead of numbers, we will consider the pairs of numbers ordered
lexicographically. If a point has coordinates (x, y), then its ”new” coordinates are
defined as pairs

{(x, y), (y, x)}.
Then every two different points in the plane have also both coordinates different.

We replace a rectagle R = [x, x′]× [y, y′] by the following rectagle in new coordinates

R′ = [(x,−∞), (x′,∞)]× [(y,−∞), (y′,∞)].

It is not difficult to verify that

(x̄, ȳ) ∈ R, iff {(x̄, ȳ), (ȳ, x̄)} ∈ R′.
Therefore, we can use the above algorithms, replacing the classical coordinates with
the new coordinates and using the standard lexicographical arrangement instead of
common arrangement of real numbers.

Range trees. Now we describe the second searching structure, again under the sim-
plification assumption that no two points in the set P have the same x or y-coordinate.
The searching structure for P consists of the binary tree T which has the points of the
set P as its leaves arranged according to the x-coordinate. Each node ν in T deter-
mines a subtree T (ν) whose root it is. For each such subtree, we create an associated
subtree Tass(ν) which has the same points in its leaves as T (ν) but arranged according
to the coordinate y.

FIGURE 7.6 Associated subtree.
Please replace Czech texts in the figure podle x and podle y by the English according

to x and according to y, respectively.

The tree T together with the system of associated subtrees Tass(ν) for all nodes ν
of T is called a range tree. If the set P contains n points, so an associated subtree for
a node ν, to which we get from the root of the tree T after i steps, requires storage
proportional to the number of leaves, i. e.

O
(n

2i

)
.

There are 2i such nodes in the tree T that is why the overall storage needed for their
associated subtrees is O(n). Since i achieves values 0, 1, 2, . . . , log2 n − 1, any range
tree on a set with n points requires storage

O(n log n).

This is more than the corresponding kd-tree on the same set. However searching with
range trees will be quicker than searching with kd-trees.

FIGURE 7.7 Storage requirement of a range tree on n points.
Please, correct also the Czech version of e-learning. Instead of kd-stromu it should

be range tree.

A contruction of a range tree is decribed by the following pseudocode:

5

PSEUDOCODE Build2DRangeTree from pseudo.pdf, page 26.

Orthogonal searching using range-trees. It is based on a one-dimensional search-
ing, first according to the coordinate x, then according to the coordinate y. Let us
enter intervals [x, x′] and [y, y′]. Let’s begin with the search in the tree T according
to the x-coordinate. For the interval [x, x′] we find a split node. Behind it, the paths
for x and x′ diverge.

If the path for x leads from a node ν to the left, then the x-coordinates of all the
leaves of the right child rc(ν) lie within the interval [x, x′]. You just need to find out
which of the y-coordinates are in the interval [y, y′]. We do this with one-dimensional
searching in the tree Tass(rc(ν))

With the path for x′ from the split node we proceed analogously. If the path from
a node ν goes right, x-coordinates of all leaves from the left subtree of ν lie in the
interval [x, x′] and that is why we search in the subtree Tass(lc(ν)) for the leaves with y-
coordinate in [y, y′]. The searching algorithm is described by the following pseudocode:

PSEUDOCODE 2DRangeQuery from pseudo.pdf, page 27

We now show that the running time of searching with range trees is more favorable
than the running time of searching with kd-trees.

Lemma 7.3. Let a set P in the plane have n points and let k of them lie in a rectagle
R. Then finding these points using a corresponding range tree takes time

O(log2 n+ k).

Proof. Searching in the associated subtree of the left or right child of a node ν with
nν leaves from which kν leaves lie in the rectagle R takes time

O(log nν + kν).

So the overall time needded to find all the points of the set P lying in 4R is

O
(∑

(log nν + kν)
)
,

where the sum is taken over all nodes through which the paths for x and x′ go. Both
paths have the same length equal to the high log n of the tree. That is why we can
carry out the estimate∑

(log nν + kν) ≤
∑

(log n+ kν) ≤ log n · log n+
∑

kν = log2 n+ k,

which completes the proof. �

Orthogonal searching in higher dimensions. Both methods can be used in di-
mensions higher than 2. In the case of kd-tree in Rd we replace vertical and horizontal
lines by hyperplanes of dimension d− 1 which are perpendicular to a coordinate axis,
so they are of d types.

A range trees in dimension d is a chain of associated subtrees. In dimension 3 we
take first the tree T giving arrangement of points in P according to the coordinate x.
To every node ν of this tree we assing an associated subtree T yass(ν) which determines
the arrangement according to the coordinate y, and finally for each node ω from T yass(ν)

6

we construct an associated tree T zass(ω) describing the arrangement according to the
coordinate z. See Figure 7.8.

FIGURE 7.8 Associated subtress in dimension 3.
Please, replace Czech expressions by the English according to x, according to y and

according to z.

Parametres of both algorithms in dimension d ≥ 2 are described by the following
table:

Requirements kd-trees range trees

storage O(n) O(n logd−1 n)

construction O(n log n) O(n logd−1 n)

searching O(n1− 1
d + k) O(logd n+ k)

