
8. Point location

Introduction. For a given planar subdivision (map), we want to find a search struc-
ture that finds in which face (region) a point lies when entering the point coordinates.
The idea of the algorithm is to ”refine” the subdivision into a so-called trapezoidal
map, and to construct the search structure for this subdivision. The advantage of the
trapezoidal map is that its individual areas are trapezoids and triangles (which can
be considered as deformed trapezoids), and these can be relatively simply described
using only four data.

FIGURE 8.1 Creation of a trapezoidal map.

Trapezoidal map. Let us have a planar subdivision (usually given by a double-
connected edge list) bounded by a rectangle R. This subdivision with its edges de-
termines a set of segments that do not intersect at the inner points, but may have
common end points. We construct the trapezoidal map for any such set of segments
S = {s1, s2,sn} inside a rectangle R. To make things geometrically easier we as-
sume that no two end points of these segments have the same x-coordinate. We will
remove this limiting assumption later. The left end of the segment si will be pi, the
right end point qi.

We build the trapeziodal map T (S) so that through each end point of a segment from
S we lead a vertical segment connecting the nearest upper segment with the nearest
lower segment, see Figure 8.2. This divides the entire rectagle R into trapezoids and
triangles.

FIGURE 8.2 A trapezoidal map for three segments.

Let’s show how the trapezoids and triangles of this map can be described using
segments from S and their end points. Each trapezoid or triangle ∆ has two non-
vertical sides, each being a part of a segment from S or a part of the upper or lower
side of the rectangle R. The upper side of this trapezoid will be called top(∆), the
lower one will be denoted as bottom(∆). The vertical sides are determined by end
points pj and qj of segments from S. In the case of a triangle, one of the vertical side
reduces to a point. Therefore, every trapezoid or triangle ∆ is determined by a top
and a bottom and by a point leftp(∆) through which the left vertical side passes and
by a point rightp(∆) through which the right vertical side passes.

FIGURE 8.3 Description of the trapezoid ∆.

The substantial is that in the trapezoidal map for n segments the number of vertices
and trapezoids is linear in n.

Theorem 8.1. The trapezoidal map for n segments has at most 6n + 4 vertices and
3n+ 1 trapezoids.

Proof. The overall number of vertices is given by the vertices of the rectagle R – they
are 4, by end points of segments – they are at most 2n and by new vertices, which
were made by at most 2n vertical segments – they are twice the number of verticals,
so at most 4n. Altogether we get at most 6n+ 4 points.

1

2

We find the number of trapezoids by specifying for each point the maximum number
of trapezoids ∆ for which this point is the left point leftp(∆). There is just one such
trapezoid for the left lower corner of the rectangle R. There is one such trapezoid for
a right end point qi, there are two such trapezoids for a left end point pi.

FIGURE 8.4 Numbers of trapezoids for given left point leftp.

Taking into account that some of end points coincide (in this case some trapezoids
are counted twice), the number of all trapezoids will be at most

1 + n+ 2n = 3n+ 1.

�

Search structure. We are given a point r which does not lie on any segment of S
and the x-coordinate of which differs from all x-coordinates of the end points pi and qi.
The search structure for a trapezoidal map T (S) is used to determine the trapezoid in
which the specified point r is located. It is an oriented graph D(S) with the following
properties:

• In leaves of the graph there are all trapezoids of the trapezoidal map T (S).
• Two edges come from every inner node.
• Inner nodes are of two types.
• The nodes of the first type are connected with end points pi and qi. From such

a node (denote it for a moment as p) we go left if for x-coordinates rx < px,
and we go right if rx > px.
• The nodes of the second type are described by segments si. From such a node

we proceed left if the point r lies under the segment si, and we go right if r
lies over si.

While for the specified set S the trapezoid map is uniquely identified, the search
structure with the above properties is not uniquely determined. The following figures
give simple examples of trapezoidal maps and related search structures.

FIGURE 8.5 Trapezoidal map and a serch structure for 1 segment.

FIGURE 8.6 Trapezoidal map and a serch structure for 2 segment.

The length of a path from the root to a leaf corresponds to the time for finding
that the specified point is lying in the trapezoid determined by this leaf. Notice the
substantially different lengths of paths to various leaves.

Randomized incremental algorithm. The trapezoidal map for an empty set of
segments consists of only the rectangle R, the search structure contains only a single
node which is a leaf corresponding to the rectangle R. Denote

Si = {s1, s2, . . . , si}.
The idea of the algorithm is to create a trapezoidal map T (Si) and a search structure
D(Si) for the set of segments Si from the trapezoidal map and the search structure
for the set Si−1. Because the search structure depends on the order of the segments,
we take this order randomly. The algorithm is framed in the following pseudocode:

ALGORITHM. TrapezoidalMap from pseudo.pdf, page 28.

3

Following segment. We now show how the algorithm briefly described in the 4th
line of the previous pseudocode works. We have a trapezoidal map T and a search
structure D for the set Si−1. Into the rectangle R we add the segment s = si with
the left end point p and the right end point q. We want to find all trapezoids ∆0, ∆1,
. . . , ∆k which the segment s intersects from left to right

FIGURE 8.7 The segment s passes through the trapezoids ∆0,∆1,∆2,∆3,∆4.

To describe this algorithm we will need the notion of adjacent trapezoids and left
and right neighbours. We say that two trapezoids are adjacent if they have a common
part of the vertical side that does not degenerate to a point.

FIGURE 8.8 Two couples of trapezoids ∆0 and ∆1, ∆0 and ∆3 are adjacent, while
the couples ∆0 and ∆2 or ∆1 and ∆2 are not adjacent.

If two adjacent trapezoids have a common bottom, we say that one is the lower left
or right neighbour of the other. If they have a common top, we say that one is the
upper left or the right neighbour of the other.

FIGURE 8.9 The trapezoid ∆1 is the upper right neighbour of the trapezoid ∆0.
The trapezoid ∆0 is the lower left neighbour of the trapezoid ∆2.

First the algorithm finds a trapezoid ∆0 in which the left end point p of the segment
s lies. If the point p is not the left end point of any segment from Si−1, simply use the
search structure D(Si−1) to find ∆0. If p is the left end point of one or more segments
of Si−1, there are more trapezoids to the right of it, and we have to select that one
through which the segment s runs. This is done by comparing the slopes of these
segments with the slope of s. The slope of this segment with the end points p and q
is equal to the quotient of the differences of y- and x-coordinates

qy − py
qx − px

.

The traced trapezoid ∆0 is characterized by the fact that its top side slope is bigger
and its bottom side slope is smaller than the slope of the segment s.

FIGURE 8.10 The slope of the segment s1 is bigger than the slope of s and this is
bigger than the slope of s2. The requested trapezoid ∆0 is the trapezoid B.

If the end point q lies to the left of rightp(∆0), the whole segment s is contained in
∆0.

FIGURE 8.11 The whole segment s lies in ∆0.

If the end point q lies to the right of rightp(∆0), the segment s intersects another
trapezoid ∆1. This trapezoid is the lower right neighbour of ∆0, if rightp(∆0) lies over
s, and the upper right neighbour, if rightp(∆0) lies under s. See the next picture.

FIGURE 8.12 Specifying ∆1 according to relative position of the segment s and the
point rightp(∆0).

In the same way we proceed further:

ALGORITHM FollowSegment from pseudo.pdf, page 29.

4

Updating the trapezoidal map and the search structure. In this section, we
show the basic idea of the algorithm that implements the 5th and 6th lines of the
TrapezoidalMap algorithm, i.e. how to replace trapezoids ∆0, ∆1, . . . ,∆k intersected
by the segment s = si by new trapezoids and so to change the trapezoidal map T and
how to change related search structure D.

Suppose first that the whole segment s lies inside one trapezoid ∆0.

FIGURE 8.13 The whole segment s lies inside the trapezoid ∆0.

In this case the trapezoid ∆0 in T is replaced by the trapezoids L, H, D a P . Each
of them is determined by its top and bottom and by its left and right points. For
example, for the trapezoid H we have

top(H) = top(∆0), bottom(H) = s, leftp(H) = p, rightp(H) = q.

We carry out the modification of the related search structure in the way shown by the
following figure.

FIGURE 8.14 The transition from D(Si−1) to D(Si).

Now let the segment s intersects more trapezoids. For the sake of clarity, consider
the situation illustrated in the first of the two following figures.

FIGURE 8.15 Transition from T (Si−1) to T (Si).

We replace the trapezoids ∆0, ∆1, ∆2, ∆3 by new trapezoids as follows. L is the
trapezoid lying to the left of the point p. It has the same top, bottom a leftp as ∆0.
Since rightp(∆0) lies under s, the next trapezoid is D1 with

leftp(D1) = p, rightp(D1) = rightp(∆0), top(D1) = s, bottom(D1) = bottom(∆0).

The right point of ∆1 lies over s, hence the next trapezoid lies over s. Denote it H1.
It is determined by the data

leftp(H1) = p, bottom(H1) = s, top(H1) = top(∆1), rightp(H1) = rightp(∆1).

The right point of ∆2 lies again over s, so the next new trapezoid H2 will lie over s
and

leftp(H2) = rightp(∆1), bottom(H2) = s, top(H2) = top(∆2), rightp(H2) = rightp(∆2).

In the further trapezoid ∆3 there is the right end point q of the segment s. We complete
the list of new trapezoids by the trapezoid D2 lying under s with the right point equal
to q, by the trapezoid H3 lying over s with the right point q and by the trapezoid P
lying to the right of q.

The modification of the search structure is illustrated by the following figure.

FIGURE 8.16 The transition from D(Si−1) to D(Si).

We will not give explicit pseudocodes for updating the trapezoidal map T and the
related search structure D. The reader can create them on the basis of the previous
considerations or he/she can find them in the bachelor thesis (in Czech) by Ondřej
Folvarčný

http://is.muni.cz/auth/th/211164/prif b/BP.pdf?lang=cs
on pages 20 and 21.

5

How to remove restrictive assumptions. The simplification consisted in the fact
that the different end points of the segments and a considered point r had different
x-coordinates. We will remove this assumption by introducing shear transformation

ϕ(x, y) = (x+ εy, y)

for small ε > 0.

Lemma 8.2. For a finite set P of points there is an ε > 0 such that for any two points
p, q ∈ P it holds

(1) ϕ(p)x 6= ϕ(q)x,
(2) px < qx ⇒ ϕ(p)x < ϕ(q)x.

Proof. Let px < qx. If py ≤ qy, then the enequality ϕ(p)x < ϕ(q)x holds for all ε > 0.
If py > qy, then the enequality ϕ(p)x < ϕ(q)x holds if and only if

0 < ε <
qx − px
py − qy

.

Since we choose the points p, q from a finite fixed set, we can find sufficiently small
positive ε satisfying the assertion of Lemma.

If now two different points p a q satisfy px = qx, it has to be py 6= qy, and consequently
also ϕ(p)x 6= ϕ(q)x. �

Now, in the previous considerations, we could replace the arrangement by x-coordinate
with the arrangement by x-coordinate of ϕ. In fact, there is no need to compute an ε
to determine the transformation ϕ.

Lemma 8.3. For each finite set of points P and a sufficiently small ε > 0, the
arrangement of points p ∈ P by x-coordinates of ϕ(p) is the same as the lexicographic
arrangement of points p first according to the x-coordinate and then by the y-coordinate.

Proof. Let p < q in the given lexicographic order. Then either px < qx and then
according to the previous considerations ϕ(p)x < ϕ(q)x, or px = qx and py < qy and so
ϕ(p)x < ϕ(q)x as well. �

From the previous considerations, we can make this practical conclusion: Whenever
in previous considerations we find out whether a given point is to the left or to the
right of another point, we will use the described lexicographic arrangement. Whenever
we find out whether a point lies over or under a segment, we use the arrangement with
respect to the y-coordinate.

Complexity estimates. Since our algorithm is random, we estimate the expected
complexity both of the construction of the search structure and of the memory needed
to store the search structure. Moreover, we estimate the expected running time for
searching a position of a point in the trapezoidal map. Let’s start with the last item.

Theorem 8.4. The expected running time for searching in the search structure D
created for a random order of n segments is O(log n).

6

Proof. The search structure D is created in n steps. Consider a path for searching the
position of a point r. Let Xi is the number of nodes in this path which were added to
the search structure in the i-th step. From figures 8.14 and 8.16 it is seen that

0 ≤ Xi ≤ 3.

Consider Xi as a random variable. Then the expected time for searching is

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) ≤ 3 probability (Xi 6= 0).

The fact that Xi 6= 0 means, that the point r lies in T (Si) in some trapezoid ∆ which
arises just in the i-th step when adding the segment si. At least one of the following
options happens:

top(∆) = si, bottom(∆) = si, leftp(∆) = pi or qi, rightp(∆) = pi or qi.

So the probability that Xi 6= 0 is at most 4/i. The expected time for searching can be
estimated from above by the sum

3

(
n∑

i=1

4

i

)
= 12

(
1 +

n∑
i=2

1

i

)
≤ 12

(
1 +

∫ n

1

dx

x

)
= 12(1 + log n) = O(log n).

The middle estimate using integral follows from the fact that the sum of areas of
rectangles with sides 1 and 1/i pro i = 2, 3, . . . , n is smaller then the area of the region
between the axis x and the graph of the function 1/x between numbers 1 and n on
the axis x. See the figure:

FIGURE 8.17 The comparison of the sum 1
2

+ 1
3

+ · · ·+ 1
n

with the intergral
∫ n

1
dx
x

.
�

Theorem 8.5. The expected size of the search structure is O(n).

Proof. The size of the search structure is

number of leaves +
n∑

i=1

number of inner nodes created in the step i.

Let ui be the number of trapezoids which arise after adding the segment si in the i-th
step. In Figures 8.13, 14, 15, 16, you can see that the number of newly created internal
nodes in the i-th step is ui− 1. It can be rigorously prooved by induction as it is done
on the page 29 of the bachalor thesis by O. Folvarčný. Therefore, assuming ui to be a
random variable, we can estimate the expected size of the data structure from above
by the expression

O(n) +
n∑

i=1

E(ui).

To complete the proof it suffices to prove that E(ui) = O(1).
Let ∆ ∈ T (Si) be a trapezoid and s ∈ Si one of the segments. Put

λ(∆, s) =

{
1, if ∆ arises by adding the segment s,

0, in opposite case.

7

Since the trapezoid ∆ is determined at most by 4 segments from S, we get∑
s∈Si

λ(∆, s) ≤ 4.

That is why ∑
s∈Si

∑
∆∈T (Si)

λ(∆, s) ≤ 4|T (Si)| ≤ 4(3i+ 1) = O(i).

Here |T (Si)| is the number of trapezoids in T (Si) which we estimated by the number
3i+ 1 in Theorem 8.1. Now realize that the number∑

∆∈T (Si)

λ(∆, si)

gives the number of trapezoids which arise in the i-th step. Hence

E(ui) =
1

i

∑
s∈Si

(∑
∆∈T (Si)

λ(∆, s)
) =

O(i)

i
= O(1).

�

Theorem 8.6. The algorithm constructs the search structure in expected time O(n log n).

Proof. The time for creating T (Si) and D(Si) from T (Si−1) and D(Si−1) is O(ui) plus a
time for searching in which trapezoid from T (Si−1) the left end point pi of the segment
si is lying. Its expected value we can estimate using the previous computations in this
way:

n∑
i=1

(
O(E(ui)) +O(log i)

)
= O(n) +O

(n∑
i=1

log i
)
≤ O(n) +O(n log n) = O(n log n).

�

Conclusion. The original task was to find in which face of a fixed plane subdivision
a given point lies. So far we have found in which trapozoid of the trapezoidal map
the point lies. Now it is easy to find a face in which the found trapezoid is contained.
It can be done if we find in which cycle of the corresponding edge-connected list the
bottom of the trapezoid (taken with suitable orientation) lies.

