Numerical methods – lecture 4

Jiří Zelinka

Autumn 2017

Jiří Zelinka [Numerical methods – lecture 4](#page-13-0) $1/14$

メロメメ 倒 メメ きょくきょう

重

 2990

Repetition

Newton method

$$
f(x) = 0
$$
, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, $k = 0, 1, 2, ...$

Fourier conditions

- \bullet Let f has continuous the second derivative in [a, b], $f(a) \cdot f(b) < 0.$
- ? Let $\forall x \in [a,b] : f'(x) \neq 0$ and f'' doesn't change its sign in $[a, b]$

Let's choose $x_0 \in \{a, b\}$ such that $f(x_0) \cdot f'' \geq 0$. Then the sequence generated by Newton method converges monotonously to \hat{x} .

メロメ メタメ メミメ メミメン ミ

 Ω

Secant methods

Method regula falsi

$$
x_{k+1} = x_k - \frac{x_k - x_s}{f(x_k) - f(x_s)} f(x_k), \qquad k = 1, 2, ...,
$$

wher s is the largest index for which $f(x_k) f(x_s) \leq 0$.

Order of the convefgence

Let $p > 1$, $x_k \rightarrow \hat{x}$, $e_k = x_k - \hat{x}$. If

$$
\lim_{k\to\infty}\frac{|e_k|}{|e_{k+1}|^p}=C<\infty
$$

then p is called the **order (rate)** of the convergence of the sequence $(x_k)_{k=0}^{\infty}$.

If the sequence $(x_k)_{k=0}^{\infty}$ is generated by the numerical methods, then p is the **order (rate) of the method**.

 $p = 1 \rightarrow$ linear method $p = 2 \rightarrow$ quadratic method

メロメ メタメ メミメ メミメン ミ

 OQ

Theorem

Let the derivatives of the iteration function g be continuouns to order $q > p$. Then the order of the convergence of the sequence $(\mathsf{x}_k)_{k=0}^{\infty}$ generated by the iteration process $x_{k+1} = g(x_k)$ is equal to p iff $g(\hat x) = \hat x$, $g'(\hat x) = 0$, $g''(\hat x) = 0, \ldots$, $g^{(\rho-1)}(\hat x) = 0$, $g^{(\rho)}(\hat x)\neq 0,$

Orders of methods:

Fixed point 1 Newton 2 Secant $\frac{1+\sqrt{5}}{2}$ $\frac{1}{2} \frac{\sqrt{5}}{2} = 1.618$ Regula falsi 1

Example: geometric sequence

メロメ メタメ メミメ メミメン ミ

 Ω

Acceleration of convergence – Aitken δ^2 -method

Geometric derivation

Let

$$
\varepsilon(x_k)=x_k-x_{k+1},\qquad \varepsilon(x_{k+1})=x_{k+1}-x_{k+2}.
$$

Points $[x_k, \varepsilon(x_k)]$, $[x_{k+1}, \varepsilon(x_{k+1})]$ are connected by the line. Its intersection with the axis x is the approximation of the limit of the sequence x_k .

The equation of the line:

$$
y-\varepsilon(x_k)=\frac{\varepsilon(x_k)-\varepsilon(x_{k+1})}{x_k-x_{k+1}}(x-x_k)
$$

The intersection with the axes x :

$$
\tilde{x}_k = x_k - \frac{\varepsilon(x_k)(x_k - x_{k+1})}{\varepsilon(x_k) - \varepsilon(x_{k+1})} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}.
$$

メロメメ 御 メメ きょくきょうき

 $2Q$

Theorem

Let ${x_k}_{k=0}^{\infty}$, $\lim_{k\to\infty} x_k = \hat{x}$, $x_k \neq \hat{x}$, $k = 0, 1, 2, \ldots$, be a sequence and let

$$
x_{k+1}-\hat{x}=(C+\gamma_k)(x_k-\hat{x}),\ k=0,1,2,\ldots,\ |C|<1,\ \lim_{k\to\infty}\gamma_k=0.
$$

Then

$$
\tilde{x}_k = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}
$$

is defined for k enough large and

$$
\lim_{k\to\infty}\frac{\tilde{x}_k-\hat{x}}{x_k-\hat{x}}=0,
$$

i.e., the sequence $\{\tilde{x}_k\}$ converges to \hat{x} faster than $\{x_k\}$.

メロメ メタメ メミメ メミメー

Ordinary differences:

$$
\Delta x_k = x_{k+1} - x_k \n\Delta^2 x_k = \Delta x_{k+1} - \Delta x_k = x_{k+2} - 2x_{k+1} + x_k \n\Delta^3 x_k = \Delta^2 x_{k+1} - \Delta^2 x_k \n\vdots \n\tilde{x}_k = x_k - \frac{(\Delta x_k)^2}{\Delta^2 x_k}
$$

メロメ メタメ メミメ メミメー

(重) 2990

Steffensen method

Let g be iteration function for the equation $x = g(x)$. Let's put

$$
y_k = g(x_k),
$$
 $z_k = g(y_k),$
 $x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k}.$

This method id called Steffensen method and it can be described bz the iteration function φ :

$$
x_{k+1}=\varphi(x_k),
$$

for

$$
\varphi(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x} = \frac{xg(g(x)) - g^2(x)}{g(g(x)) - 2g(x) + x}.
$$

メロメ メ御 メメ ヨメ メヨメ 一番

 OQ

Theorem

- **1** If $\varphi(\hat{x}) = \hat{x}$ then $g(\hat{x}) = \hat{x}$.
- \bm{z} If $\bm{g}(\hat{x})=\hat{x}$, the derivative $\bm{g}'(\hat{x})$ exits and $\bm{g}'(\hat{x})\neq 1$, then $\varphi(\hat{x}) = \hat{x}$.

イロン イ団 メイミン イミン ニヨー

 2990

Systems of non-linear equations

Newton method

$$
F(\mathbf{x}) = \mathbf{o}, \qquad F \in C^{2}(O(\xi))
$$

$$
J_{F}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{m}} \end{pmatrix}
$$

$$
\mathbf{x}^{k+1} = \mathbf{x}^k - J_F^{-1}(\mathbf{x}^k)F(\mathbf{x}^k)
$$

Iteration function

$$
G(x) = x - J_F^{-1}(x)F(x)
$$

 $(1, 1)$ $(1, 1)$

④ 重 ト ④ 重 トー

重