Numerical methods - lecture 5 Jiří Zelinka Autumn 2017 Jiří Zelinka 1/11 Iteration methods for solving system of linear equations Ax = b —> x = 7~x + g Iteration process: x/c+i =Txk + g = 0,1,... Solution: x = (E-T)-1g 2/11 Theorem The sequence {x^}^ determined by the iteration process x = Tx + g converges for every initial iteration x° g Rn p(T) < 1. In this case lim x = x, x = Tx + g /c—>-oo Jiří Zelinka Numerical methods - lecture 5 3/11 Jacobi iteration method System of linear equations: Ax = b /-th equation: an*i H-----1- 3nXi H-----h a/A?xn = b; The component x,- is expressed n Xi = - E j'=i Xj + '// and it is used as the new (k + l)-th iteration n xf+1 = - E j'=i 'y „/c 7 ' 5 a a ^a □ iS1 Jiří Zelinka Numerical methods - lecture 5 4/11 Matrix notation x X /c+1 /c+1 /c+1 V o ^21 ^22 3nl 'nn 312 an 0 3n2 'nn 3l„ \ an 32 n 322 0 X-, Xr 3ll b2_ 322 V 7Z J 5/11 Ax = b, A = D + L+U, Ax = (D + L + U)x = b / au O \ \ o ann y Jiří Zelinka 6/11 L = í o ■ V anl ■ ( O 3i2 U = Vo a„,„-i O / 3ln \ 3/7—1, n O = -D"1(/.+ Ľ)x+ D_ib. -i ■k+i _ n-i = -D~l(L+ U)xk + D^b. □ iS1 Jiří Zelinka Numerical methods - lecture 5 7/11 x^1 = Tjxk + D~1b: Tj = -D~\L + U), ty = -f for i^j, ta = 0 3,7 a Tj = 0 ^21 322 V 3nl ]nn 3l2 0 3n2 ]nn 3l„ \ 3ll 32 n 322 0 D_1b = 3ll 322 V a™ y Jiří Zelinka □ [31 Numerical methods - lecture 5 8/11 Gauss-Seidel iteration method The component of the new iteration is used in the following step: x x x k+l k+1 1 an 1 a22 1 a33 (t (t>i — 3\2X2 ~ a13x3 ~~ a14x4 — • • • > ) 321*i+1 — 323x3 ~ a24*4 — • • • ? ) ./c+1 Jc+1 a31*i ' * — a32*2 ' ~ ~~ a34*4 — • • • ? ) X /c+1 1 '// i-l E j'=i 5ľ 7=/+l X J □ iS1 Jiří Zelinka Numerical methods - lecture 5 9/11 Matrix notation: Ax = b {D + L+U)x {D + L)x = -Ux + b = -(D + L)~1Ux + {D + L)-lb -i TG = -{D + L)-ľU, xk+1 = TGxk + {D + L) -i Theorem: If A is diagonally dominant matrix, i.e. an > E 'u or 3;; > E 7// 'J' then Jacobi and Gauss-Seidel methods converge. □ [31 Jiří Zelinka Numerical methods - lecture 5 Relaxation (Succesive over-relaxation (SOR)) method xk - k-th iteration x^1 - the following iteration aquired by the Gauss-Seidel metod u e (0,2) - relaxation parameter xk+1 = (1 - u)xk + uxkGf 11/11