
Tools for functional

decomposition and

minispecification

DUM 08

DFD is a modelling tool allowing to display the system as a network of

processes that perform given functions and transfer data. DFD offers

functionally oriented perspective on the system.

● In operational research, work flow diagrams are used since the begging of

20th century

● They provide a picture of “what is going on”

Alternative names:

● Function Model, Bubble Chart (Yourdon, 1975)

● Process Model (Gane, Sarson, 1977)

● Work Flow Diagram

Data Flow Diagram

DFD components and notation

Terminator Process Data flow Memory
● Proces, function, transformation

● Memory, datastore

● Data flow, flow

● Terminator, external entity

Notation example Gane/Sarson,

Yourdon/DeMarco

● A process shows the part of the system that transforms

certain inputs into outputs. A process is named by one

word, phrase or by a simple sentence. The name

expresses what is the process doing.

● There might be a name of a person, group, department,

computer or a mechanical device as a part of the

process name. Then the name expresses who is doing

the particular activity or data transformation instead of

explaining the essence of transformation.

Processes

Flows

● Flow portrays a path through which data (information

packets) are moving from one part of the system to

another.

● In some cases the flow might show movement of

physical material. In some systems the DFD might

represent both data and material flows.

Material & Data Flows

● Flows are named. Name expresses the meaning of a packet which is transported

via given path. Flow transfers only one type of packet defined by its name.

● Packet has different meaning when it travels on differently named flows. Same data

on flows “Phone #”, “Valid Phone #” and “Invalid Phone #” have different meaning.

Diverging flows

● Duplicate of the same data packet are send to different parts

● Data packet is decomposed into simpler data packets which are send to different

part of the system

● Entries with various values emerge on data flow and they are sorted accordingly

Data flow naming

● Name of the flow should express the essence of the transformation.

Example: order - validated order

string of characters - number in given extent

filled form - correctly filled form

raster image - equalized raster image

Signature
1

Signature

verification

Verified

signature

Memory, Essential Memory

● Memory models a collection of resting data. Name is usually selected as a plural form of name

used to describe packets flowing in and out of memory

● Essential memory - data transferred between two and more processes working in different time

Memory attributes

● A memory is a passive part of the system, data are not transferred in/out of memory unless it is

explicitly requested

● Reading is not destructive, i.e. memory is not changed if the packed is moving through output

memory flow

● Input memory flow might have meaning or record, change or deletion. It may express following

situations:

■ One or more new packets are added to memory, at the end or somewhere in the

middle of existing packets

■ One or more packets are deleted, moved out of memory

■ One or more packets are changed; this could mean changing the whole packet or

(more frequently) just a part of it or changing similar parts of multiple packets

Implementation memory

Why use implementation memory?

● Both processes run on the same computer but there is not enough

memory (or other HW requirement) that could both processes use in real

time

● One or both processes will be run on technical equipment that is not

enough reliable. A memory serves as a means of storage of yet processed

parts of data and promotes security of the system

● Both processes will be implemented by different programmers. A memory

serves as a interface between two independently implemented subsystems

● System analyst predicts that memory will be used for future functions (so

far unspecified)

Memories with unnamed flows

● From analytical point of view, it is irrelevant whether we describe a situation when:

● a single data packet is being read from the memory

● more than one packet is obtained from memory

● only a part of the packet is being read

● parts of more than one packet are being read

Example - Bakery

Example - Bakery

Example - Bakery

Terminator

● Terminators represent external entities that the system

communicates with.

● Terminators are outside modelled system and the flows

that are connected to the processes or memories of the

system represent a borderline between system and

outter world.

Terminator

Neither system analyst nor designer can change the

content of the terminator or the way it works.

No relationship between terminators is reflected by DFD.

Existing relationships are not part of analysed system. If it is necessary

to record these relationships during defining the user requirements,

then the terminator is in fact a part of the system and therefore should

be modelled as a process.

Example - Travel Agency

DFD Hierachy

Example - Request processing

decomposition

Recommendation for DFD creation

● Choose appropriate names for processes, data flows, memories and

terminators

● Number the processes systematically

● Draw aesthetic and readable diagrams

● Avoid too simple or too complex DFDs

● Check upon internal and external consistency of DFD

Example - School IS

Internal consistency of DFD

● Finding and removing “black holes”, i.e. processes having

only inputs and not producing any data (hidden interface /

terminator)

● Finding and removing “white dwarfs”, i.e. processes having

only outputs (hidden DB interface / terminator)

Internal consistency of DFD

● It is important to verify unnamed flows and processes

→ Suspicion:

- Random data sets were collected here and therefore

it is hard to name the data flow

- Unnamed flow has no apparent function and the

decision how to name it was postponed

● Check memories used solely for reading or writing data.

These are reasonable only at the borderline between system

and environment (but still it is usually considered as

incorrect...)

Relationships under analysis

DFD Hierarchy

Rules for creating multilevel DFDs

● Process numbering is projected on lower levels. If a process has number

n, sublevel processes are numbered as follows: n.1, n.2, n.3 …

● Name of the process becomes name of the DFD on lower level

● Number of DFD levels is chosen in a way that there are not too many

processes and memories. It is recommended to have 5-7 processes and

memories on one page

● Medium sized system has approx. 3-6 levels of DFD. The number must be

managable and maintaned.

Rules for creating multilevel DFDs

● For ensuring consistency on individual DFD levels, input and output flows

of processes must be coherent as well as their respective DFDs on lower

levels

Rules for creating multilevel DFDs

● A memory is drawed for a first time on a level where it is used as an

interface between two or more processes. Such memory is repeatedly

used on every lower level DFD where decomposed processes work with

this memory on higher level

Minispecification

A minispecification describes (defines) the logic of processes. It is both analytic

and designing tool and it is consulted with the customer

● For every process at the lowest level DFD we have to create exactly one minispecification

● The minispecifiation has to describe the rules of transformation from input data flow to output

data flow

● The minispecification has to desribe rules and methods of transformation but not the

implementation of these rules itself

● The minispecification must not bring redundancy of any kind into the specification document

Structured english

Structured english is a regular language where following is left:

● developed attributes, redundant adjectives

● complicated syntax

● all grammatical moods except for imperativ

● all syntaxes except for limited set of conditional and logical orders

● most punctuation (question marks, dashes, etc.)

● all explanation (it is left for notes)

Structured english

Vocabulary is made of

● imperative verbs

● concepts defined in Data Vocabulary

● words reserved for logical formulation

Syntax is resricted on

● simple declarative sentences

● closed decisive constructions

● closed repetive constructions

Structured english

IF <condition>

THEN

<activity for valid condition>

OTHERWISE

<activity for invalid condition>

--

SELECT

CASE 1 (condition 1): <activity for condition 1>

…

CASE n (condition n): <activity for condition n>

Structured english

<introductory phrase for repetition>:

<repeated activity>.

<condition for repetition>.

<introductory phrase for repetition & condition for repetition>:

<repeated activity>.

REPEAT UNTIL, WHILE DO, FOR EVERY DO

Example - Scholarships

FOR EVERY student DO

IF student did not pass given exams, THEN

SELECT:

CASE 1 (avg. grade <1.50):

Highest scholarship.

CASE 2 (avg. grade >1.50):

No scholarship.

OTHERWISE,

No scholarship.

Where is an error?

Example - Scholarships

Systematic numbering according to levels of embedded constructions:

1. FOR EVERY student DO

1.1 IF student did not pass given exams, THEN

1.1.1 SELECT:

CASE 1 (avg. grade <1.50):

1.1.1.1 Highest scholarship.

CASE 2 (avg. grade >1.50):

1.1.1.2 No scholarship.

OTHERWISE,

1.1.2 No scholarship.

2. Next activity

Example - Coctails during flight

“We serve free coctails whenever the flight is at least 50% occupied and average price of ticket

exceeds 350$, unless it is domestic flight. Coctails on domestic flights are served only when the flight

is at least 50% occupied and they are always charged.”

SELECT:

CASE 1 (At least 50% occupancy & avg. ticket price at least 350$ & not domestic flight):

Serve free coctails.

CASE 2 (Domestic flight):

Charge every coctail.

IF At least 50% occupancy, THEN Serve coctails.

OTHERWISE No coctails.

Example - Coctails during flight

Specification using decision table.

- easier to find conflicts or ambiguity

Example - Coctails during flight

Specification using decision tree.

Pre- & post- conditions

Are used when:

● User labels an activity solved by certain process using special and

concrete algorithm which was used for long period of time

● Analyst is convinced that various algorithms can be used

● Analyst wants the programmer to try several algorithms, he does not want

to be concerned with details and, in particular, he does not want to argue

with user about relative advantages of these algorithms

Preconditions

● What inputs are to be available

Precondition

A data packet X will appear.

● What relationships must exist between inputs or inside inputs

Precondition

A patient is a woman older than 18 years.

Precondition

A patient is a man and the unit is male.

● What relationships must exist between inputs and data memories

Precondition

The patient is already recorded in memory Patient_on_bed

Postconditions

● Outputs created by the process

● Relationships existing between output values and original input values

Postcondition

Total invoice_price will be calculated as a sum of unit_price + shipping_price.

● Relationships existing between output values and values in one or more memories

Postcondition

In memory INVOICES, the variable sum_of_invoices will be raised

by 1 and the output value will be

number_of_issued_invoices.

● Changes being made in memories

Postcondition

Issued_invoice inserted as last into the memory INVOICES.

Pre- & Post- Conditions

Recommendation: First describe standard situations, then add conditions for solving

non-standard situations

● Precondition 1

Customer enters bank_account_number which matches with bank account number recorded in

memory ACCOUNTS and whose state_code is set to value “valid.”

● Postcondition 1

Invoice with bank_account_number and selling_price is prepared.

● Precondition 2

Precondition 1 is not fulfilled (bank_account_number cannot be found in memory

ACCOUNTS or state_code is not “valid”)

● Postcondition 2

Error message is created.

Nassi-Schneiderman Diagrams

IF-THEN-ELSE

DO-WHILE

