
UML

Interaction Diagram and

Class Diagram

DUM 05

Historical perspective

What is UML?

• UML - Unified Modelling Language

• UML combines best of

– Data modelling concept (entity-relationship diagram, ERD)

– Manufacturing processes modelling (workflow diagrams)

– Object modelling

– Component modelling

• UML is a standardized language for description, specification,
construction and documentation of SW oriented system
artifacts

• It can be used for modelling processes during all phases of
development and for various implementation technologies

UML Concepts

UML allows to (among others):

– Display the borders of the system & its main functions
through Use cases and Actors

– Illustrate realisation of use cases with interaction diagrams

– Represent static structure of the system by the Class
diagram

– Model behavior of objects with State-Transition diagram

– Reveal physical implementation architecture using the
Component diagram

– Extend the functionality using Stereotypes

Use Case realisation

• Use Case diagram shows external view on the

system

• Interaction diagrams describe how are use cases

implemented as an interaction between groups of

objects

• Two types of interaction diagrams:

– Sequence diagrams

– Communication diagrams

Sequence diagrams

Sequence diagrams displays interaction between objects. This

interaction is ordered into a time sequence

Communication diagram

: Associate Dean

formC :

FormCourse

thisAdmin:

AdminCurriculum
this course:

Course

1: course information input

2: process

3: add course

4: new course

Communication diagram illustrates the interaction between

objects and their mutual interconnection

Class diagram

• Class diagram displays the existence of classes

and their relationships through the logic

perspective of a system

• UML modelling elements used in class diagrams:

– Classes, their structure and behavior

– association, agregation, dependency and inheritance

relationships

– Indicators of multiplicity and navigations

– Name of roles

Classes

• Class is a collection of objest with identical structure,

behavior and semantics

• Classes are found by re-examination of object in sequence

diagrams and collaboration diagrams. Class is depicted as

a rectangle with three sections

• Classes should be named using dictionary of the subjective

domain

• There should be a standard for creating classes names

– E.g. All classes will be in form of a singular noun with first capital

letter

Classes

RegistrationForm

RegistrationAdmin Course

Student

CourseOfferProfessor

PlanningAlgorithm

Operations

• Behavior of classes is represented by their operations

• Operations can be found after re-examination of

interaction diagram

Form

Registration

Admin

Registration

3: subscribeCourse(John, P007)

RegistrationAdmin

enrollCourse(student,Course)

Attributes

• A structure of the class is represented by its attributes

• Attributes can be found by re-examination of class

definition, requirements and by using knowledge of given

domain

Every course offer consists of

code, place and time

CourseOffer

code

place

time

Classes

RegistrationForm PlanningAlgorithm

RegistrationManager

enrollCourse(student,course)

Student
name

supervisor

Proffesor
name

department

Course

name

creditDonation

open()

enrollStudent (student)

CourseOffer
place

open()

enrollStudent (student)

Relationships

• Relationships provide channel for communication between

objects

• Sequence and/or cooperation diagrams are used to define the

connections between objects that are needed for certain

behavior – if some objects need to „talk“ to each other, then

there must be a relationship between

• There are 2 general types of relationships:

– Between classes

– Between instances

Relationship between classes

• Generalization / Inheritance is a strong relationship

between superclass and its subclasses

• E.g. Shape [Triangle; Rectangle; Circle]

• Inherits attributes, methods, relationships

• Common attributes, operations and/or relationships are

shown at the highest applicable level of hierarchy

• Specialization / Dependency is a weak relationship where

client uses some methods of the provider but has no

semantic knowledge of the provider

Inheritance

name

RegistrationUser

RegistrationForm PlanningAlgorithm

RegistrationAdmin

enrollCourse(student,course)

Student
name

supervisor

Proffesor
name

department

Course

name

creditDonation

open()

enrollStudent (student)

CourseOffer
place

open()

enrollStudent (student)

specialization

aggregation

Relationships between instances

• Association is mutual connection between classes

• Association is represented by a link connecting related classes

• Aggregation is a form of weaker dependency, it portrays a relation
between whole and its parts, but the parts can exist on its own (e.g.
Student - University)

• Aggregation is represented by link connecting related classes, while
empty diamond sign is located next to class representing the whole

• Composition is a form of stronger dependency, where component
ceases to exist if the whole is deleted (e.g. Invoice – Item)

• Diamond sign is filled

Finding relationships

Relationships are found after re-examination of interaction

diagrams

– If two object „communicate“, then there must be a relationship

between them

P007:Course
Registration

Admin

3: addStudent(John)

Course

Registration

Admin

Relationships

RegistrationForm PlanningAlgorithm

RegistrationAdmin

enrollCourse(student,course)

Student
name

supervisor

Professor
name

department

Course

name

creditDonation

open()

enrollStudent (student)

CourseOffer
place

open()

enrollStudent(student)

Multiplicity and Navigation

Multiplicity defines how many objects are participating in the

relationship

•Multiplicity is a number of instances of one class with regard to

ONE instance of other class

•There must be two multiplicities for each association and

aggregation: for each end of the relationship

Although association and aggregation are implicitly

bidirectional, it might be suitable to restrict the navigation to

just one direction

The added arrow shows direction of navigation if restricted

navigation is applied

Multiplicity and navigation

RegistrationForm PlanningAlgorithm

RegistrationAdmin

enrollCourse(student,course)

Student
name

supervisor

Professor
name

department

Course

name

creditDonation

open()

enrollStudent (student)

CourseOffer
place

open()

enrollStudent(student)

0..*

1

1

0..*

1..*

4

3..10

0..41

