
Machine Learning

Jan Rygl

rygl@fi.muni.cz

jan.rygl@phonexia.com

Outline

What is machine learning1. 

Common concepts2. 

Techniques overview3. 

Recommendations4. 

Machine learning

Machine learning is the science of getting computers to act without

being explicitly programmed. (Coursera)

The basic premise of machine learning is to build algorithms that can

receive input data and use statistical analysis to predict an output

value within an acceptable range. (whatis.com)

ML consists of:

goal definition1. 

data acquisition2. 

data preprocessing3. 

feature extraction4. 

a) applying ML model5. 

b) output postprocessing (optional)6. 

analysing results7. 

deploying trained model8. 



Goal definition

Problem type:

one-class classification (one label per document),

multi-class classification (zero to many labels per document),

clustering (known number of clusters/unknown cluster

count),

regression (predict correct value),

verification (compute similarity of two documents),

on-line learning (train system with new inputs),

reinforcement learning (update system with delays -- after

inputs are classified),

...

Goal definition

Scoring:

Which results are good/acceptable/bad?

What is priority?

Can I make mistakes? Can I not answer?

�✁✂✄☎✆☎✝✞ ✟
✠✡☛✠

✠✡☛☞✌☛✠

✍✂✄✎✏✏ ✟
✠✡☛✠

✠✡☛☞✌✑✠

✒✓✔✂✎✆✕✁✂ ✟ ✖ ✗
�✁✂✄☎✆☎✝✞✘✍✂✄✎✏✏

�✁✂✄☎✆☎✝✞✙✍✂✄✎✏✏

✚✄✄✕✁✎✄✛ ✟
✠✡☛☞✡✑✠

✠✚✏✏ ✜✝✄✕✔✂✞✢✆✠

✣✎✏✎✞✄✂✜ ✎✄✄✕✁✎✄✛ ✟ ✤
✠✡☛✠

✥✘✠✌✑☞✡☛✠

✠✡✑✠

✥✘✠✌☛☞✡✑✠



Examples:

Bank searching for account hijacks

We want high recall (find all possible frauds).

We want high precision: we have 10 people for

checking accounts manually, we can have

maximum 500 false positive cases per day.

Metric consists of two parts:

precision > 98% if 2% corresponds to 500

checks per day

recall highest possible

possible score:

Examples:

Training language model

We want high accuracy

For English and German, we have many testing

examples

For smaller languages such as Czech, we have

less examples

We can train a model perfect for English and

German and bad for other languages with

accuracy

We don't care about precision and recall, we care

about correct results

Balanced accuracy or F-measure: the most

possible correct results for each language (F-

measure is harder to explain to customer)

�✁✂✄☎ ✆ ✝✞✟✠✡✡ ☛ ☞✌✍✎✏✑ ✒✝✞✟✓✔✓✕✖ ✗ ✏✘✙✚✛ ✜ ✢✣✤✥✦✧★



Goal definition

Computing power and time:

Do we have GPU? Enough RAM? How many processor

cores?

Should system be parallel/serial?

Should system be scalable?

Is system on-line (response in miliseconds)?

Marker search (state of the art analysis) is recommended before

starting any experiment. Which algorithms need big machines? Which

techniques support on-line training? Etc.

Data acquisition

Beware of GDPR http://www.eugdpr.org/ (http://www.eugdpr.org/)

Buy (legal!) data

Collect and annotate

Crawler from web vs pay somebody for crawling web

Ask your partners/customers for data

For specific tasks (analysis of bank accounts), only one data source is

enough (account logs from bank).

For general tasks (entity detection, many data sources will be needed

(known entity collections, text similar to analysed texts).



Data preprocessing

Deduplication

Remove meta-data and other information connected to

labels not present in real data

e.g., authorship attribution of anonymous e-mails

trained on signed data

Cleaning (remove noise such as images, tables, quotes, not

always aplicable, depends on task):

topic recognition: ignore tables with numbers,

convert images to keywords (title, label), keep

quotes

authorship recognition (replace images and tables

by tag IMG, remove quotes)

Possible language analysis (tokenization, morphology and

syntactic analysis, semantic analysis) and connecting with

other databases

Start with something simple in the beginning.

Use existing tools, don't invent a wheel

�✁ ✂✄☎✆ ✝✞✟✠ ✡☛☞✌✍☞✟✌✎✡✏✑✎ ✏✠✒✟✞☞ ✓✔✕✖✗✘✔✙✚✁✛✜✚

✢✎✝ ✣✤✗✥✔✔✦✗✘✔✙✚✁✛✧✚✕★✘✚✩✘✪✆

✝✟✞ ✥✫✬✕ ✏✡ ✭★✪ ✮✯✰✭✆

✘✚✩✘ ✱ ✘✚✩✘✮✕✚✲✦✬✥✚★✥✫✬✕✯ ✭✳✭ ✴ ✥✫✬✕ ✴ ✭✳✭✪

✞✎☞✵✞✡ ✂✘✔✙✚✁ ✝✟✞ ✘✔✙✚✁ ✏✡ ✘✚✩✘✮✧✲✦✛✘★✭✳✭✪ ✏✝ ✘✔✙✚✁ ✶✡✢ ✡✟☞ ✘✔

✙✚✁✮✛✧✧✲✬✥✚★✪☎

✘✚✩✘ ✱ ✷✸✕✁✚✧✘ ✹✔✤✥✚ ★✥✮ ✄✺✻✼✰✄✽✾✿✪ ✓✬✧ ✬ ❀✔✤✬✦ ❁✬❂✬✦ ✧✚✬✣✬✁✮✷

✒✞✏✡☞★✘✚✩✘✮✧✲✦✛✘★✪✪

✒✞✏✡☞★✓✔✕✖✗✘✔✙✚✁✛✜✚★✘✚✩✘✪✪

✒✞✏✡☞★✣✤✗✥✔✔✦✗✘✔✙✚✁✛✧✚✕★✘✚✩✘✪✪

✂✭✸✕✁✚✧✘✭✯ ✭✹✔✤✥✚✭✯ ✭★✥✮✭✯ ✭✄✺✻✼✰✄✽✾✿✪✭✯ ✭✓✬✧✭✯ ✭✬✭✯ ✭❀✔✤✬✦✭✯ ✭

❁✬❂✬✦✭✯ ✭✧✚✬✣✬✁✮✭☎

✂✭✸✕✁✚✧✘✭✯ ✭✹✔✤✥✚✭✯ ✭★✭✯ ✭✥✮✭✯ ✭✄✺✻✼✰✄✽✾✿✭✯ ✭✪✭✯ ✭✓✬✧✭✯ ✭✬✭✯ ✭❀

✔✤✬✦✭✯ ✭❁✬❂✬✦✭✯ ✭✧✚✬✣✬✁✭✯ ✭✮✭☎

✂✭✸✕✁✚✧✘✭✯ ✭✹✔✤✥✚✭✯ ✭★✭✯ ✭✥✭✯ ✭✮✭✯ ✭✄✺✻✼✭✯ ✭✰✭✯ ✭✄✽✾✿✭✯ ✭✪✭✯ ✭✓

✬✧✭✯ ✭✬✭✯ ✭❀✔✤✬✦✭✯ ✭❁✬❂✬✦✭✯ ✭✧✚✬✣✬✁✭✯ ✭✮✭☎



Which text output is better? Which tokenizer is better?

Feature extraction

Iterative process

Begin with simple ones, add complexity with more

experiments if not successful

Think about features -- many features help only for one data

source

Features shouldn't be able to describe every document in

training set perfectly: e.g. bag of words with all words for

long books can match 100% training data easily.

Features should be able to find out some generalization of

rule.

Use feature selection methods (e.g. entropy based) if you

have too many features (depends on computing power and

number of instances)

Feature extraction

Good starters:

bag of words

stop words

word n-grams

character n-grams

Always try to precompute features from data, don't use public

lists of best words/stop words/character n-grams. They are topic

and style dependent.



Feature extraction

requires tuning data set

data don't have to be annotated

they need to have the same format and style as classified

data

not part of train or test set

If you extract features from training data, you can overtrain. --

Train data accuracy will be high, but test data won't be recognized

well.

If you extract features from test data, you are cheating. --

Evaluation doesn't have any sense.

Preparing data for machine learning

Check that you have enough data.

Prepare:

tune set (unlabeled, see feature extraction)

train set

test set

Train set is usually bigger than test set, but test set must be

representative. Use different source of data for testing if possible

and add some data of the same type as training set documents to it.



Not enough data

If you don't have enough data from making big enough train and test

sets, use one of following techniques:

random sampling:

repeat N times (e.g. N=10, n=50, ...):

select randomly 90% of instances and use them for

training

rest of instances is used for testing

evaluate trained model

compile all evaluations (average, min, ...), system

performance is compilation of performances of

random data samplings

n-fold cross-validation:

divide data into N groups (folds)

repeat N times (common values are 4 and 10):

Nth fold is testing, all other folds are

merged into training set

evaluate trained model

compile all evaluations, same as previous step

Applying machine learning model

Select correct model1. 

Use correct model correctly2. 

Select the "lightest" possible model which is able to process data =>

you will save computing and programming time.

For Python programmers, I definitely recommend Sklearn:

http://scikit-learn.org/ (http://scikit-learn.org/)

Lazy programmer is a good programmer.

Implementing a ML algorithm is a good practise for school seminars,

but students' implementations are less efficient and usually introduce

some bugs.



�✁ ✂✄☎✆ ✝✞✟✠ ✡☛☞✌✍✞✎ ✏✠✑✟✞✒ ✓✔✕✔✖✗✕✖

✝✞✟✠ ✡☛☞✌✍✞✎ ✏✠✑✟✞✒ ✖✘✙

✚✛✚✖ ✜ ✓✔✕✔✖✗✕✖✢✣✤✔✓✥✚✛✚✖✦✧

✓✚★✚✕✖ ✜ ✓✔✕✔✖✗✕✖✢✣✤✔✓✥✓✚★✚✕✖✦✧

✩✣✪ ✜ ✖✘✙✢✫✬✭✦★✔✙✙✔✜✮✢✮✮✯✰ ✭✜✯✮✮✢✧

✩✣✪✢✪✚✕✦✓✚★✚✕✖✢✓✔✕✔✂✆✱✯☎✰ ✓✚★✚✕✖✢✕✔✛★✗✕✂✆✱✯☎✧

ML models

Supervised

Naive Bayes

Linear classifiers

Decision trees

Random forests

SVM

Neural networks

...

Unsupervised

Clustering algorithms (K-means, hierarchical

clustering)

Neural networks

Outlier detection

...

✲✳✕✂✄☎✆ ✫✬✭✦✭✜✯✮✮✢✮✰ ✩✔✩✴✗✥✖✚✵✗✜✄✮✮✰ ✩✣✔✖✖✥✶✗✚★✴✕✜✷✤✁✗✰ ✩✤✗✪✮✜✮✢✮✰

✓✗✩✚✖✚✤✁✥✪✳✁✩✕✚✤✁✥✖✴✔✸✗✜✷✤✁✗✰ ✓✗★✛✗✗✜✹✰ ★✔✙✙✔✜✮✢✮✮✯✰ ✺✗✛✁✗✣✜✻

✛✼✪✻✰

✙✔✽✥✚✕✗✛✜✱✯✰ ✸✛✤✼✔✼✚✣✚✕✾✜✿✔✣✖✗✰ ✛✔✁✓✤✙✥✖✕✔✕✗✜✷✤✁✗✰ ✖✴✛✚✁✺✚✁★✜

❀✛✳✗✰

✕✤✣✜✮✢✮✮✯✰ ✘✗✛✼✤✖✗✜✿✔✣✖✗✧



Supervised ML

Typical for smaller data

Data annotation is possible

We know what we want to find/predict

Not applicable usually for Facebook and Google like

companies, but great for smaller companies and problems

Scenario 1

I don't have time to implement/wait

I don't need to explain results to somebody else

It should perform reasonably well

Try Naive Bayes

Naive Bayes

(sklearn source) Naive Bayes methods are a set of supervised

learning algorithms based on applying Bayes’ theorem with the

“naive” assumption of independence between every pair of features.

Given a class variable y and a dependent feature vector x_1 through

x_n, Bayes’ theorem states the following relationship:

�✁✂ ✄ ☎✆ ☎ ✝ ✞✟✠ ✟✡
�✁✂✝�✁ ☎✆ ✄ ✂✝✟✠ ✟✡

�✁ ☎✆ ☎ ✝✟✠ ✟✡



�✁ ✂✄☎✆ ✝✞✟✠✡☛ ☛✝✞☞

✌✡✠✞ ✍✎✏☞✑✡✒ ✝✞✟✠✡☛ ✓✔✕✔✖✗✕✖

✘✙✘✖ ✚ ✓✔✕✔✖✗✕✖✛✜✢✔✓✣✘✙✘✖✤✥

✌✡✠✞ ✍✎✏☞✑✡✒✦✒✑✝✧☞★✩✑✪☞✍ ✝✞✟✠✡☛ ✫✔✬✖✖✘✔✁✭✮

✯✁✰ ✚ ✫✔✬✖✖✘✔✁✭✮✤✥

✖✕✔✙✕ ✚ ✕✘✱✗✛✕✘✱✗✤✥

✲✣✳✙✗✓ ✚ ✯✁✰✛✴✘✕✤✘✙✘✖✛✓✔✕✔✵ ✘✙✘✖✛✕✔✙✯✗✕✥✛✳✙✗✓✘✶✕✤✘✙✘✖✛✓✔✕✔✥

✟✡✝✒☛✤✷✸✬✙✔✕✘✢✁✆ ✹✺✦✻✌ ✖✗✶✢✁✓✖✷ ✼ ✤✕✘✱✗✛✕✘✱✗✤✥ ✽ ✖✕✔✙✕✥✥

✟✡✝✒☛✤✾✭✬✱✰✗✙ ✢✴ ✱✘✖✜✔✰✗✜✗✓ ✳✢✘✁✕✖ ✢✬✕ ✢✴ ✔ ✕✢✕✔✜ ✹✿ ✳✢✘✁✕✖ ✆ ✹✿✾

✼ ✤✘✙✘✖✛✓✔✕✔✛✖❀✔✳✗✂❁☎✵✤✘✙✘✖✛✕✔✙✯✗✕ ❂✚ ✲✣✳✙✗✓✥✛✖✬✱✤✥✥✥

Scenario 2

I have a lot of binary/multi value features (e.g. ❃❄❅❄❆ ❇

❈❆❉❊❋ ●❉❅❅❄❍❋ ■❆❉❉❏❑)

I want to explain decision

Tuning should be intuitive

Try Decision trees

(sklearn source) Decision Trees are a supervised learning method

used for classification and regression. The goal is to create a model

that predicts the value of a target variable by learning simple decision

rules inferred from the data features.

✸✬✙✔✕✘✢✁✆ ❁✛❁❁▲ ✖✗✶✢✁✓✖

✭✬✱✰✗✙ ✢✴ ✱✘✖✜✔✰✗✜✗✓ ✳✢✘✁✕✖ ✢✬✕ ✢✴ ✔ ✕✢✕✔✜ ▲▼❁ ✳✢✘✁✕✖ ✆ ◆





Scenario 3

If any of following aplies:

I don't want black box, customer (court, security agency,

clever CTO) wants to be explained decisions of system

I can give time to output analysis

I need quick performance

linear classifiers are perfect match.

�✁ ✂✄✄☎✆ ✝✞✟✠ ✡☛☞✌✍✞✎✏☞✑✎✌✍✞✒✠✟✓✌☞ ✑✠✔✟✞✕ ✖✗✘✙✚✛✜✜✢✣✢✤✥

✑✠✔✟✞✕ ✕✑✠✌

✝✞✟✠ ✡☛☞✌✍✞✎ ✑✠✔✟✞✕ ✦✛✧✛✜✤✧✜

✢✥✢✜ ★ ✦✛✧✛✜✤✧✜✩✚✪✛✦✫✢✥✢✜✬✭

✜✮✦ ★ ✖✗✘✙✚✛✜✜✢✣✢✤✥✬✭

✜✧✛✥✧ ★ ✧✢✯✤✩✧✢✯✤✬✭

✰✫✱✥✤✦ ★ ✜✮✦✩✣✢✧✬✢✥✢✜✩✦✛✧✛✲ ✢✥✢✜✩✧✛✥✮✤✧✭✩✱✥✤✦✢✳✧✬✢✥✢✜✩✦✛✧✛✭

✔✞✑✎✕✬✴✘✵✥✛✧✢✪✁✆ ✶✷✏✸✝ ✜✤✳✪✁✦✜✴ ✹ ✬✧✢✯✤✩✧✢✯✤✬✭ ✺ ✜✧✛✥✧✭✭

✔✞✑✎✕✬✻✼✵✯✽✤✥ ✪✣ ✯✢✜✚✛✽✤✚✤✦ ✱✪✢✁✧✜ ✪✵✧ ✪✣ ✛ ✧✪✧✛✚ ✶✓ ✱✪✢✁✧✜ ✆ ✶✓✻

✹ ✬✢✥✢✜✩✦✛✧✛✩✜✾✛✱✤✂✿☎✲ ✬✢✥✢✜✩✧✛✥✮✤✧ ❀★ ✰✫✱✥✤✦✭✩✜✵✯✬✭✭✭

Analysis of trained weights:

positive value: higher the value, higher the chance of label

negative value: higher the absolute value, lower the chance

of label

select label with highest scalar product of weights and

features

✘✵✥✛✧✢✪✁✆ ✿✩✿✿✄ ✜✤✳✪✁✦✜

✼✵✯✽✤✥ ✪✣ ✯✢✜✚✛✽✤✚✤✦ ✱✪✢✁✧✜ ✪✵✧ ✪✣ ✛ ✧✪✧✛✚ ❁❂✿ ✱✪✢✁✧✜ ✆ ❂✿



�✁ ✂✄☎✆✝ ✞✟✠ ✁✡☛ ☞✌✍✎☞ ✏✑ ✎✁✒✓✎✔✌✕✎✖✗✔✗✘✙✕✌✔✚✎✕✛✁✌✓✎✘✜✝

✢✠✏✑✣✖✤✥✌✍✎☞ ✦✧✤ ★ ☞✌✍✎☞✜

✢✠✏✑✣✖✤✩ ✤✙✪✡✗✁✖✂

✤✫✎✗✚✬✕✂✦✧✆✭✦✮✯✰✞✤ ★ ✖☞✌✍✎☞☛ ✫✎✗✚✬✕✜

✞✟✠ ☞✌✍✎☞☛ ✫✎✗✚✬✕ ✏✑ ✱✗✲✖✗✔✗✘✙✳✎✌✕✒✔✎✛✁✌✓✎✘☛ ✘✚✴✙✵✡✎✳✛✂✁✡✆

✜✆✜✜

Scenario 4

Bigger data set, previous methods don't work.

More powerfull techniques are needed:

we want some readability: random forests

black box is enough, but we don't have GPUs for NN: SVM

Random forests

There are tools for explaining forests decisions (the most

common paths in trees)

Results can be analysed, human readable

With increasing tree count and more deep structure, power

of forest is growing

Better for multi-value features

Could horrible fail for periodic functions, e.g. sinus

✥✌✍✎☞ ✘✎✕✡✘✌

✫✎✗✚✬✕✂✘✎✲✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✶✙✷✸✩ ✫✎✗✚✬✕✂✘✎✲✌☞ ✫✗✴✕✬ ✖✵✓✜✆✭✷✸✙✹✶✩

✫✎✗✚✬✕✂✲✎✕✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✺✻☎✙✶✼✩ ✫✎✗✚✬✕✂✲✎✕✌☞ ✫✗✴✕✬ ✖✵✓✜✆✭✺✷✽✙

✹✶

✥✌✍✎☞ ✾✎✔✘✗✵✡☞✡✔

✫✎✗✚✬✕✂✘✎✲✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✻☎✙✼✄✩ ✫✎✗✚✬✕✂✘✎✲✌☞ ✫✗✴✕✬ ✖✵✓✜✆✭✺✹✽✄✙

✷✄✩ ✫✎✗✚✬✕✂✲✎✕✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✄✼✙☎✿✩ ✫✎✗✚✬✕✂✲✎✕✌☞ ✫✗✴✕✬ ✖✵✓✜✆✭✺

✸☎✙✸✹

✥✌✍✎☞ ✾✗✔✚✗✁✗✵✌

✫✎✗✚✬✕✂✘✎✲✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✺✹✼✸✙✷✹✩ ✫✎✗✚✬✕✂✘✎✲✌☞ ✫✗✴✕✬ ✖✵✓✜✆✭✺✹✹

✼✙✄✽✩ ✫✎✗✚✬✕✂✲✎✕✌☞ ☞✎✁✚✕✬ ✖✵✓✜✆✭✷✄✻✙✻✷✩ ✫✎✗✚✬✕✂✲✎✕✌☞ ✫✗✴✕✬ ✖✵✓✜

✆✭✹✶✿✙✽✷



�✁ ✂✄☎✆✝ ✞✟✠✡ ☛☞✌✍✎✟✏✑✍✏☛✍✡✒✌✍ ✓✡✔✠✟✕ ✖✗✁✘✙✚✛✙✜✢✣✤✥✦✗✣✣✧★✧✢✜

✞✟✠✡ ☛☞✌✍✎✟✏✑✩✎✕✎☛✍✕☛ ✓✡✔✠✟✕ ✚✗✪✢✫✬✦✗✣✣✧★✧✬✗✤✧✙✁

✓✡✔✠✟✕ ✕✓✡✍

✞✟✠✡ ☛☞✌✍✎✟✏ ✓✡✔✠✟✕ ✘✗✤✗✣✢✤✣

✧✜✧✣ ✭ ✘✗✤✗✣✢✤✣✮✦✙✗✘✫✧✜✧✣✯✰

✬✦★ ✭ ✖✗✁✘✙✚✛✙✜✢✣✤✥✦✗✣✣✧★✧✢✜✯✚✗✱✫✘✢✲✤✳✭✴✵ ✜✗✁✘✙✚✫✣✤✗✤✢✭✶✰

✣✤✗✜✤ ✭ ✤✧✚✢✮✤✧✚✢✯✰

✬✦★✮★✧✤✯✧✜✧✣✮✘✗✤✗✵ ✧✜✧✣✮✤✗✜✷✢✤✰✮✲✜✢✘✧✬✤✯✧✜✧✣✮✘✗✤✗✰

✔✟✓✏✕✯✸✛✢✗✤✹✜✢ ✺✢✧✷✳✤✣✝✸ ✻ ✬✦★✮★✢✗✤✹✜✢✫✧✚✲✙✜✤✗✁✬✢✣✫✰

✔✟✓✏✕✯✸✼✹✜✗✤✧✙✁✝ ✽✾✑✿✞ ✣✢✬✙✁✘✣✸ ✻ ✯✤✧✚✢✮✤✧✚✢✯✰ ❀ ✣✤✗✜✤✰✰

✔✟✓✏✕✯❁❂✹✚❃✢✜ ✙★ ✚✧✣✦✗❃✢✦✢✘ ✲✙✧✁✤✣ ✙✹✤ ✙★ ✗ ✤✙✤✗✦ ✽✩ ✲✙✧✁✤✣ ✝ ✽✩❁

✻ ✯✧✜✧✣✮✘✗✤✗✮✣✳✗✲✢✂✶✆✵ ✯✧✜✧✣✮✤✗✜✷✢✤ ❄✭ ❅✫✲✜✢✘✰✮✣✹✚✯✰✰✰

Support vector machines

For long time, the best ML for NLP problems. Currently popularity of

SVM is decreasing because of the deep learning.

Features of SVM:

hard to select correct parameters (feature tuning is required)

slower then previous methods

except linear kernel works as black box

more powerful, number of features can be higher than

number of training samples

✛✢✗✤✹✜✢ ✺✢✧✷✳✤✣✝

✼✹✜✗✤✧✙✁✝ ✶✮✶✴❆ ✣✢✬✙✁✘✣

❂✹✚❃✢✜ ✙★ ✚✧✣✦✗❃✢✦✢✘ ✲✙✧✁✤✣ ✙✹✤ ✙★ ✗ ✤✙✤✗✦ ❇❈✶ ✲✙✧✁✤✣ ✝ ❉☎



citing (sklearn):

The advantages of support vector machines are:

Effective in high dimensional spaces.

Still effective in cases where number of dimensions is

greater than the number of samples.

Uses a subset of training points in the decision function

(called support vectors), so it is also memory efficient.

Versatile: different Kernel functions can be specified for the

decision function. Common kernels are provided, but it is

also possible to specify custom kernels.

The disadvantages of support vector machines include:

If the number of features is much greater than the number of

samples, avoid over-fitting in choosing Kernel functions and

regularization term is crucial.

SVMs do not directly provide probability estimates, these are

calculated using an expensive five-fold cross-validation (see

Scores and probabilities, below).

Scenario 5

We have complex, difficult problem.

OR

We have images or other problems with binary features.

Use neural networks.



Neural networks

Steps:

Think about features and how to extract them

E.g., using bag of words containing 1000 words,

input layer consists of 1000 inputs

Each sentence is represented as a vector of zeros

with several ones on positions corresponding to

words in the sentence (one hot encoding)

Each sentence is represented as a vector of float

numbers between 0 and 1, each word is encoded

as a 1000 float numbers, each word encoding is

different to each other word encodings

Think how to design neural network:

how many layers

size of each layer

neural network type

which components should be used

Start with small and simple and add complexity.

Being expert in NN is a big project

Testing hypothesis is very slow and you need good

hardware

Playing with many configurations, components, parameters,

tricks, ...

The best solutions are usually find by luck -- the space of all

neural networks is too big

Play with input data -- neural networks needs a lot of data --

generate data automatically, add noise to existing data, or

use NN on unsupervised problems

Sklearn supports only the simplest neural networks, e.g.:

�✁ ✂✄☎✆✝ ✞✟✠✡ ☛☞✌✍✎✟✏✑✏✍✒✟✎✌✓✏✍✔✕✠✟☞ ✖✡✗✠✟✔ ✘✙✚✛✜✢✣✣✤✥✤✦✧



Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic

gradient descent.

Neural networks

To use neural networks in Python, you have two reasonable

possibilities:

Keras with Theano background:

Keras is a high-level neural networks API, written in

Python and capable of running on top of

TensorFlow, CNTK, or Theano. It was developed

with a focus on enabling fast experimentation.

Being able to go from idea to result with the least

possible delay is key to doing good research.

It is more user friendly, but documentation is not

great.

Tensorflow from Google:

https://www.tensorflow.org/

(https://www.tensorflow.org/)

Ineffective on small number of GPUs

The most effective on big projects, many GPUs

available

Harder to use and learn

Unsupervised algorithms

More creativity is needed. Manual result analysis is must.



Data/result analysis

Use some baseline algorithm to set up some expectations. E.g.

guess labels randomly, guess the most common label.

If you are not happy with achieved results, analyse:

your system (search bugs, use logging for each component,

check manually and with asserts all components inputs and

outputs)

if system learns weights, check which features are used and

which are ignored

outputs: which classes are wrong, which are ok

inputs: what happens with less inputs, with sampling,

randomizing the order, ...

features: do they cover all cases?

If results are better than you expected:

again, check everything, chance of bug or using flawed

dataset is big.

Everything is perfect:

if you have time, still check.

Deploying trained model

Speeding up:

more effective feature extraction

better data structures

using GPUs over CPUs for some techniques

Memory reduce:

iterators instead of lists

read structures from memory instead of holding it in RAM



Writing result parsers:

converting ML outputs to desired format

Documentation and evaluation:

achieved precision/recall/accuracy, strong and weak points

of system

recommended system configuration

guess of experiment duration for sample data set lengths

Interface:

good CLI or GUI, notebook, ...

In history, rewriting in C++, currently the speed is almost the same.

Questions?

Control checks

You are analysing a mood of a person by first sentence in an

opener message:

�✁✂✄☎ ✆✝✞ ✟✠✡

☛☞✌☞✍✎✆✠✡

✏✠✑✒✓✍✎✞☎ ✔✂ ✟✠ ✟✕☞✖✂✗✗✗

✘✖✙✠✄ ✚✠✛✜ ✢✝ ✕✑ ✑✣✤✕✠✖✥✑✗✗✗

✣☞✑ ✒✂✖✠✦✧★

Recommend some features.

You are given 100 annotated e-mails and 100 e-mails

without labels to solve a classification problem. How do you

divide data into training and testing set and tuning set?

You have small project on classification of salesmans

performance (influence of number of calls, appointments,

overtimes and other factors on sales of examined person):

which ML technique will you use and why? Select

one from NN, SVM, Random Forests, Decision

Trees, Linear classifiers, Naive Bayes, ...



Thank you

�✁ ✂✄☎✆✝ ✞ ✟✠✡☛✠ ☞✌✍✎✏☞✑✒✓

✔✕✖✗✘✙✚✛ ✁✜✢✣✁✤✚✛✙ ✁✣✙✚✜✣✣✥✦✧✚★✣✩✪✗✘✁✜ ✫✫✙✣ ✬✭✪✧✚✬ ✫✫✗✣✬✙ ✬✚✛✤✚

✂✮✜✯✣✁✤✚✛✙✰✗✗✆ ✯✣✁✤✚✛✙✪✁✱ ✁✣✙✚✜✣✣✥ ✁✣✙✚✜✣✣✥✦✧✚★✣✩✪✗✘✁✜ ✙✣ ✬✭✪✧✚

✬

✂✮✜✯✣✁✤✚✛✙✰✗✗✆ ✲✛✪✙✪✁✱ ✳✴✵☎✵✶ ✜✘✙✚✬ ✙✣ ✁✣✙✚✜✣✣✥✦✧✚★✣✩✬✭✪✧✚✬✩✷✙★

✭

✂✮✜✯✣✁✤✚✛✙✰✗✗✆ ✸✚✧✪✛✚✢✙✪✁✱ ✛✚✤✚✹✭✩✕✬ ✛✚✺✖✚✬✙✬ ✙✣ ✷✙✙✗✬✝✻✻✢✧✁✕✬✩

✢✭✣✖✧✼✭✹✛✚✩✢✣★✻✹✕✹✽✻✭✪✜✬✻✛✚✤✚✹✭✩✕✬✻✾✩✄✩✵

✿✚✛✤✪✁✱ ✘✣✖✛ ✬✭✪✧✚✬ ✹✙ ✷✙✙✗✝✻✻☎✴❀✩✵✩✵✩☎✝❁✵✵✵✻✁✣✙✚✜✣✣✥✦✧✚★✣✩✬✭✪✧

✚✬✩✷✙★✭

❂✬✚ ✯✣✁✙✛✣✭✫✯ ✙✣ ✬✙✣✗ ✙✷✪✬ ✬✚✛✤✚✛

❃✯

�✁✙✚✛✛✖✗✙✚✧


