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Abstract  The bag-of-words representation commonly used in text analysis can be
analyzed very efficiently and retains a great deal of useful information,
but it is also troublesome because the same thought can be expressed us-
ing many different terms or one term can have very different meanings.
Dimension reduction can collapse together terms that have the same
semantics, to identify and disambiguate terms with multiple meanings
and to provide a lower-dimensional representation of documents that
reflects concepts instead of raw terms. In this chapter, we survey two
influential forms of dimension reduction. Latent semantic indexing uses
spectral decomposition to identify a lower-dimensional representation
that maintains semantic properties of the documents. Topic modeling,
including probabilistic latent semantic indexing and latent Dirichlet al-
location, is a form of dimension reduction that uses a probabilistic model
to find the co-occurrence patterns of terms that correspond to semantic
topics in a collection of documents. We describe the basic technologies
in detail and expose the underlying mechanism. We also discuss recent
advances that have made it possible to apply these techniques to very
large and evolving text collections and to incorporate network structure
or other contextual information.

Keywords: Dimension reduction, Latent semantic indexing, Topic modeling, Latent
Dirichlet allocation.

1. Introduction

In 1958, Lisowsky completed an index of the Hebrew scriptures to
help scholars identify the meanings of terms that had long since become
unfamiliar [42]. Through a tedious manual process, he collected together
all of the contexts in which every term occurred. As he did this, he
needed to suppress differences in word form that were not significant
while preserving differences that might affect the semantics. He hoped
by this undertaking to enable other researchers to analyze the different
passages and understand the semantics of each term in context.

The core task of automated text mining shares many of the same chal-
lenges that Lisowsky faced. The same concept can be expressed using
any number of different terms (synonymy) and conversely the apparently
same term can have very different meanings in different contexts (pol-
ysemy). Automated text mining must leverage clues from the context
to identify different ways of expressing the same concept and to identify
and disambiguate terms that are polysemous. It must also present the
data in a form that enables human analysts to identify the semantics
involved when they are not known a priori.

It is common to represent documents as a bag of words (BOW), ac-
counting for the number of occurrences of each term but ignoring the
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order. This representation balances computational efficiency with the
need to retain the document content. It also results in a vector represen-
tation that can be analyzed with techniques from applied mathematics
and machine learning, notably dimension reduction, a technique that is
used to identify a lower-dimensional representation of a set of vectors
that preserves important properties.

BOW vectors have a very high dimensionality — each dimension cor-
responding to one term from the language. However, for the task of
analyzing the concepts present in documents, a lower-dimensional se-
mantic space is ideal — each dimension corresponding to one concept
or one topic. Dimension reduction can be applied to find the semantic
space and its relationship to the BOW representation. The new repre-
sentation in semantic space reveals the topical structure of the corpus
more clearly than the original representation.

Two of the many dimension reduction techniques that have been ap-
plied to text mining stand out. Latent semantic indexing, discussed
in Section 2, uses a standard matrix factorization technique (singular
vector decomposition) to find a latent semantic space. Topic models,
on the other hand, provide a probabilistic framework for the dimension
reduction task. We describe topic modeling in Section 3, including prob-
abilistic latent semantic indexing (PLSI) and latent Dirichlet allocation
(LDA). In Section 4, we describe the techniques that are used to inter-
pret and evaluate the latent semantic space that results from dimension
reduction. Many recent advances have made it possible to apply di-
mension reduction and topic modeling to large and dynamic datasets.
Other advances incorporate network structures like social networks or
other contextual information. We highlight these extensions in Section 5
before concluding in Section 6. '

1.1 The Relationship Between Clustering,
Dimension Reduction and Topic Modeling

Clustering, dimension reduction and topic modeling have interesting
relationships. For text mining, these techniques represent documents in
a new way that reveals their internal structure and interrelations, yet
there are subtle distinctions. Clustering uses information on the similar-
ity (or dissimilarity) between documents to place documents into natural
groupings, so that similar documents are in the same cluster. Soft clus-
tering associates each document with multiple clusters. By viewing each
cluster as a dimension, clustering induces a low-dimensional representa-
tion for documents. However, it is often difficult to characterize a cluster



132 MINING TEXT DATA

in terms of meaningful features because the clustering is independent of
the document representation, given the computed similarity.

On the other hand, dimension reduction starts with a feature repre-
sentation of documents (typically a BOW model) and looks for a lower-
dimensional representation that is faithful to the original representation.
Although this close coupling with the original features results in a more
coherent representation that maintains more of the original information
than clustering, interpretation of the compressed dimensions is still dif-
ficult. Specifically, each new dimension is usually a function of all the
original features, so that generally a document can only be fully under-
stood by considering all of the dimensions together.

Topic modeling essentially integrates soft clustering with dimension
reduction. Documents are associated with a number of latent topics,
which correspond to both document clusters and compact representa-
tions identified from a corpus. Each document is assigned to the topics
with different weights, which specify both the degree of membership in
the clusters as well as the coordinates of the document in the reduced
dimension space. The original feature representation plays a key role in
defining the topics and in identifying which topics are present in each
document. The result is an understandable representation of documents
that is useful for analyzing the themes in documents.

1.2 Notation and Concepts

Documents. ‘We use the following notation to consistently describe
the documents used for training or evaluation. D is a corpus of M
documents, indexed by d. There are W distinct terms in the vocabulary,
indexed by v. The term-document matrix X is a W x M matrix encoding
the occurrences of each term in each document. The LDA model has
K topics, indexed by ¢. The number of tokens in any set is given by
N, with a subscript to specify the set. For example, N; is the number
of tokens assigned to topic ¢. A bar indicates set complement, as for
example Zg, = {zgn : d' # dorn’ # n}.

Multinomial distribution. A commonly used probabilistic model
for texts is the multinomial distribution,

11%
MX|®) o< [T 5,
v=1
which captures the relative frequency of terms in a document and is
essentially equivalent to the BOW-vector with £;-norm standardization

as Zz‘ild’v =1
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Dirichlet distribution. Dirichlet distribution is the conjugate
distribution to multinomial distribution and therefore commonly used
as prior for multinomial models:

M=

r ( €i) K
D(®|E) = =L [wi .
I'(&) =t

i=1

This distributions favors imbalanced multinomial distributions, where
most of the probability mass is concentrated on a small number of values.
As a result, it is well suited for models that reflect commonly observed
power law distributions in human language.

Generative process. A generative process is an algorithm describ-
ing how an outcome was selected. For example, one could describe the
generative process of rolling a die: one side is selected from a multino-
mial distribution with 1/6 probability on each of the six sides. For topic
modeling, a random generative process is valuable even though choos-
ing the terms in a document is not random, because they capture real
statistical correlations between topics and terms.

2. Latent Semantic Indexing

LSI is an automatic indexing method that projects both documents
and terms into a low dimensional space which, by intent, represents the
semantic concepts in the document. By projecting documents into the
semantic space, LSI enables the analysis of documents at a conceptual
level, purportedly overcoming the drawbacks of purely term-based anal-
ysis. For example, in information retrieval, users may use many different
queries to describe the same information need, and likewise, many of the
relevant documents may not contain the exact terms used in the partic-
ular query. In this case, projecting documents into the semantic space
enables the search engine to find documents containing the same con-
cepts but different terms. The projection also helps to resolve terms that
are associated with multiple concepts. In this sense, LSI overcomes the
issues of synonymy and polysemy that plague term-based information
retrieval.

LSI was applied to text data in the 1980s and later used for indexing
in information retrieval systems [23]. It has also been used for a variety
of tasks, including assigning papers to reviewers [28] and cross-lingual
retrieval.
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LSI is based on the singular value decomposition (SVD) of the term-
document matrix, which constructs a low rank approximation of the
original matrix while preserving the similarity between the documents.
LSI is meant to interpret the dimensions of the low-rank approximation
as semantic concepts although it is surpassed in this regard by later im-
provements such as PLSI. We now describe the basic steps for perform-
ing LSI. Then, we will discuss the implementation issues and analyze
the underlying mechanisms for LSI.

2.1 The Procedure of Latent Semantic Indexing

Given the term-document matrix X of a corpus, the d-th column X4
represents a document d in the corpus and the v-th row of the matrix
X, denoted by T, represents a term v. Several possibilities for the
encoding are discussed in the implementation issues section.

Let the singular value decomposition of X be

X =UxvT,
where the matrices U and V' are orthonormal and ¥ is diagonal—

g1
Y=
Omin{W,M}

The values 01, 02, ..., Onin{w,ar} are the singular values of the matrix
X. Without loss of generality, we assume that the singular values are
arranged in descending order, oy > g9 > -+ > Tmin{W,M}-

For dimension reduction, we approximate the term-document matrix
X by arank-K approximation X. This is done with a partial SVD using
the singular vectors corresponding to the K largest singular values.

X=0%vT
g1 V{
=[U1 UK] s (5.1)
oK Vﬁ

SVD produces the rank-K matrix X that minimizes the distance from
X in terms of the spectral norm and the Frobenius norm. Although X is
typically sparse, X is generally not sparse. Thus, X can be viewed as a
smoothed version of X, obtained by propagating the co-occurring terms
in the document corpus. This smoothing effect is achieved by discovering
a latent semantic space formed by the documents. Specifically, we can
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observe from Eqn. (5. 1) that each document d can be 1epresented by a
K-dimensional vector X4, which is the d-th row of the matrix V. The
relation between the representation of document d in term space X4 and
the latent semantic space X4 is given by

X,=UsX,.
_ Similarly, each term v can be represented by the K-dimensional vector
T, given by

T,=VXT,.
Thus, LSI projects both terms and documents into a K-dimensional

latent semantic space. We can utilize these projections into latent se-
mantic space to perform several tasks.

Information retrieval. In information retrieval, we are given a
query q which contains several key terms that describe the information
need. The goal is to return documents that are related to the query. In
this case, we can view the query as a short document and project it into
the latent semantic space using

q= i“IUTq.

Then, the similarity between the query and document can be measured
in the latent semantic space. For example, we can use the inner product

Vd q. By using the smoothed latent semantic space for the comparison,
we mitigate the problems with synonymy and polysemy.

Document similarity. The similarity between document d and
d' can be measured using their representations in the latent semantic
space, for example, using the inner product of X, and X . This can
be used to cluster or classify documents. Additional regularization may
be necessary to resolve the non-identifiability of the SVD [63].

Term similarity. Analogous to the document similarity, term sim-
ilarities can be measured in the latent semantic space, so as to identify
terms with similar meanings.

2.2 Implementation Issues

2.2.1 Term-Document Matrix Representation. LST uti-
lizes the term-document matrix X for a document corpus, which rep-
resents the occurrences of terms in documents. In practice, the term-
document matrix can be constructed in several ways. For example, each
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entry x,q can represent the number of times that the term v occurs in
document d. However, Zipf’s law shows that real documents tend to be
bursty—a globally uncommon term is likely to occur multiple times in
a document if it occurs at all [19]. As a result, simply using the term
frequency tends to exaggerate the contribution of the term. This prob-
lem can be directly addressed by using a binary representation, which
only indicates whether a term occurs in a particular document and ig-
nores its frequency. Global term-weight methods, such as term frequency
weighted with inverse document frequency (IDF) [44], provide a good
compromise for most document corpora. Besides these BOW represen-
tations, the language pyramid model [70] provides a multi-resolution
matrix representation for documents, encoding not only the semantic
information of term occurrence but also the spatial information such as
term proximity, ordering, long distance dependence and so on.

2.2.2 Computation. LSI relies on a partial SVD of the term-
document matrix, which can be computed using the Lanczos algorithm
[7, 30, 73]. The Lanczos algorithm is an iterative algorithm that com-
putes the eigenvalues and eigenvectors of a large and sparse matrix X
using the matrix vector multiplication. This process can be accelerated
by exploiting any special structure of the term-document matrix. For
example, Zha and Zhang [75] provide an efficient algorithm when the ma-
trix has a low-rank-plus-shift structure, which arises when regularization
is added. Numerous implementations that use the Lanczos algorithm are
available, including SVDPACK (http://www.netlib.org/svdpack).

2.2.3 Handling Changes. In real world applications, the
corpus often changes rapidly. As a result, it is impractical to apply LSI
to the corpus every time a document is added, removed or changed.
There are two strategies for efficiently handling these changes.

Fold-in. One method for updating LSI is called fold-in, where we
compute the projection of the new documents and terms into the latent
semantic space based on the projection for original documents and terms.
In order to fold in a document represented by vector d € RW into a
existing latent semantic indexing, we can project the document into the
latent semantic space based on the SVD decomposition obtained from
the original corpus.
d=3"107d.

Fold-in is very efficient because the SVD does not need to be recomputed.
Because the term vector d is typically sparse, the fold-in process can be
computed in O(K N) time, where N is the number of unique terms in d.
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Updating the semantic space. Although the fold-in process
is efficient and maintains a consistent indexing, there is no longer any
guarantee that the indexing provides the best rank-K approximation of
the modified corpus. Over time, the outdated model becomes increas-
ingly less useful. Several methods for updating the LSI model have been
proposed that are both efficient and accurate [8, 52, 74]. For example,
Zha and Simon [74] provide an updating algorithm based on performing
LSI on [X X'] instead of [X X'], where X’ is the term-document matrix
for new documents. Specifically, the low-rank approximate X is used
to replace the document-term matrix X of the original corpus. Assume
that the QR decomposition of the matrix (I — UUT)X" is

(I -UU)X' = U'R,
where R is a triangular matrix and X =USV is the partial SVD of the
matrix X. Then we have

(X X'] = [0 U] [z oT X] [VT o]

0 R 0 I’

5:(7TXb
0 R

Now we can compute the best rank-K approximation of [
SVD:

S UTXx
0 R

] _ PyoT.

Then, the partial SVD for [X X’] can be expressed as

A T
TTIN P # V 0| A
(wv1p)= ([0 1] Q> ,
which provides an approximation of the partial SVD for [X X']. A the-

oretical analysis by Zha and Simon shows that this approximation will
not introduce unacceptable errors into LSI [74].

2.3 Analysis

Due to the popularity of LSI, there has been considerable research
into the underlying mechanism of LSI.

Term context. LST improves the performance of information re-
trieval by discovering the latent concepts in a document corpus and thus
solving the problems of synonymy and polysemy. Bast and Majumdar
[5] demonstrate this point by considering the projections of a query g



138 MINING TEXT DATA

and document d into the latent semantic space by the mapping
flx)=UTx.

The cosine similarity of the query and document in the latent semantic
space is

qtUUTd
IUTqllIUTd]
Since the factor HUTqH does not depend on documents, it can be ne-
glected without affecting the ranking. Note that

1o7d| = 1wt d|,

gd =

so the cosine similarity Syq can expressed by

qTUUTd  ¢"Td
|O0Tq)|  |ITd||’

qd =

where T = UUT.

The similarity Syq between query ¢ and document d can be expressed
by the cosine similarity of query q and the transformed document 7'd.
In term-based information retrieval, the transformation 7" = I, so the
original document is used to calculate the similarity. In LSI, however,
the transformation T" is not the identity matrix. Intuitively, the entry
tyy Tepresents the relationship between terms v and v'. Specifically,
the occurrence of term v in document has an equivalent impact on the
similarity to t,, times the occurrence of term v in the same document.
In this sense, LSI enriches the document by introducing similar terms
that may not occur in the original document.

Bast and Majumdar [5] also analyze LSI from the view of identifying
terms that appear in similar contexts in the documents. Consider the
sequence of the similarities between a pair of terms with respect to the

dimension of latent semantic space, K, (k) = Zle Usf)Uff,)T, where
U® is from the rank-i partial SVD. The trend of the sequence can be
categorized into three different types: increasing steadily (A); first in-
creasing and then decreasing (B); or, no clear trend (C). If terms v and
v’ are related, the sequence is usually of Type A or B. Otherwise, the
sequence is of Type C. This result is closely related to global special
structures in the term-document matrix X that arise from similar con-
texts for similar terms. Thus, the sequence K, of similar terms have
the specific shapes described above.

Since LSI captures the contexts of terms in documents, it is able to
deal with the problems of synonymy and polysemy: synonymy can be
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captured since terms with the same meaning usually occur in similar
context; polysemy can be addressed since terms with different meaning
can be distinguished by their occurrences in different context. Landauer
[40] also provides intuition for LSI by showing that it captures several
important aspects of human languages.

Dimension of the latent semantic space. Dupert [29] studies
how to determine the optimal number of latent factors for finding the
most similar terms of a query. In particular, he shows how LSI can deal
with the problem of synonymy in the context of Correlation method. He
also provides an upper bound for the dimension of latent semantic space
in order to present the corpus correctly.

Probabilistic analysis. Kubato Ando and Lee [38] explore the
relationship between the performance of LSI and the uniformity of the
underlying distribution. When the topic-documents distribution is quite
uniform, LSI can recover the optimal representation precisely. Papadim-
itriou et al. [53] and Ding [26] analyze LSI from a probabilistic perspec-
tive which is related to probabilistic latent semantic indexing [36], which
we discuss next.

3. Topic Models and Dimension Reduction

Taboo® (a registered trademark of Hasbro) is a game where one player
must help a teammate guess a word from a game card without using any
of the taboo words listed on the card. The surprising difficulty of the
game highlights that certain terms are very likely to be present based
on the topic of a document. Latent topic models capture this idea by
modeling the conditional probability that an author will use a term given
the topic the author is writing about.

LSI reduced the dimensionality of documents by projecting the BOW
vectors into a semantic space constructed from the SVD of the term-
document matrix. By providing a mechanism to explicitly reason about
latent topics, probabilistic topic models can achieve a similar yet more
meaningful latent semantic space. The results are presented in familiar
probabilistic terms, and thus can be directly incorporated into other
probabilistic models and analyzed with standard statistical techniques.
Moreover, Bayesian methods can be used to make the models robust to
parameter selection. Finally, one of the most useful advantages is that
the models can be easily extended by modifying the structure to solve
interesting related problems.
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3.1 Probabilistic Latent Semantic Indexing

PLSI, proposed by Hofmann [36], provides a crucial step in topic
modeling by extending LSI in a probabilistic context. PLSI has seen
widespread use in text document retrieval, clustering and related areas;
it builds on the same conceptual assumptions as LSI, but uses a radically
different probabilistic generative process for generating the terms in the
documents of a text corpus.

PLSI is based on the following generative process for (w,d), a word
w in document d:

= Sample a document d from multinomial distribution p(d).

= Sample a topic ¢ € {1,...,K} based on the topic distribution
04 = p(z = i|d).

= Sample a term v for token w based on ®;, = p(w = v|z = 7).

In other words, an unobservable topic variable z is associated with
each observation (v,d) in PLSI. The joint probability distribution for
p(v,d) can be expressed as

K
p(v,d) =p(d)p(v|d),  where  p(v|d) =) p(v|z =i)p(z = ild).
i=1

This equation has the geometric interpretation that the distribution
of terms conditioned on documents p(z = i|d) is a convex combination
of the topic-specific term distributions p(v|z = 7).

Connection to LSI. An alternative way to express the joint prob-
ability is given by

p(v,d) =Y p(z = i)p(d|z = i)p(v|z = 7).

=1

This formulation is sometimes called the symmetric formulation because
it models the documents and terms in a symmetric manner. This for-
mulation has a nice connection to LSI: the probability distributions

p(d|z = i) and p(w|z = %) can be viewed as the projections of docu-
ments and terms into the latent semantic spaces, just like the matrices
V and U in LSL Also, the distribution p(z = 1) is similar to the diago-
nal matrix 3 in LSI. This is the sense in which PLSI is a probablhstlc
version of LSI.
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3.1.1 Algorithms. The maximal likelihood method is used
to estimate the parameters p(d), p(z|d) and p(v|z). Given the term-
document matrix X, the log-likelihood of observed data can be expressed
as

M W
L= Zvadlogp(w =v,d)

d—lv i |

—szvdlogzp = p(z=dld)p(d).  (52)
d=1v=1
Maximizing the log-likelihood function is equivalent to minimizing the
Kullback-Leibler divergence (KL) [39] between the measured empirical
distribution p(v|d) and the model distribution p(w|d) = Zfil p(w|z =
i)p(z = i|d). Since this is non-convex, expectation-maximization (EM)
[24] is used to seek a locally optimal solution. The log-likelihood value
(Eqn. (5.2)) increases on each iteration and converges to a local maxi-
mum.
Expectation. The E-step computes the posterior of the latent variable
z based on the current estimation of the parameters.

p(d)p(z = t|d)p(v|z = 1)
Y p(@)p(z = ?|d)p(v]z = #')
where the prime on p indicates the new estimate of the probability for
the next step.
Mazimization. The M-step updates the parameters once the latent

variables are known using the posterior estimated in the previous E-
step: .

P'(z=1ild,v) =

M

p'(w=vlz) vadp'(z =i|d,w = v);
d=1
W

p'(z =i|d) « vadp'(z = i|d,w = v);

v=1
w

X Z Tyd -
v=1

3.1.2 Updating. Given a new document d, the fold-in process
can be applied to obtain its representation in the latent semantic space,
much like for LSI. Specifically, an EM algorithm similar to parameter
estimation can be used to obtain p(z|d) [37]. p(w|z) and p(z) are not
updated in the M-step during fold-in.
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Figure 5.1. Diagram of the LDA graphical model

3.2 Latent Dirichlet Allocation

PLSI provides a good basis for text analysis, but it has two prob-
lems. First, it contains a large number of parameters that grows linearly
with the number of documents so that it tends to overfit the training
data. Second, there is no natural way to compute the probability of
a document that was not in the training data. LDA includes a pro-
cess for generating the topics in each document, thus greatly reducing
the number of parameters to be learned and providing a clearly-defined
probability for arbitrary documents. Because LDA has a rich generative
model, it is also readily adapted to specific application requirements,
which we describe in Section 5.

3.2.1 Model. Like PLSI, LDA is based on a hypothetical gen-
erative process for a corpus. A diagram of the graphical model showing
how the different random variables are related is shown in Fig. 5.1. In
the diagram, each random variable is represented by a circle (continu-
ous) or square (discrete). A variable that is observed (its outcome is
known) is shaded. An arrow is drawn from one random variable to an-
other if the the outcome of the second variable depends on the value of
the first variable. A rectangular plate is drawn around a set of variables
to show that the set is repeated multiple times, as for example for each
document or each token.

= CHOOSE THE TERM PROBABILITIES FOR EACH TOPIC. The dis-
tribution of terms for each topic ¢ is represented as a multinomial
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distribution @®;, which is drawn from a symmetric Dirichlet distri-
bution with parameter S.

_ T(WB) 1
G

s CHOOSE THE TOPICS OF THE DOCUMENT. The topic distribu-
tion for document d is represented as a multinomial distribution
04, which is drawn from a Dirichlet distribution with parameters
a. The Dirichlet distribution captures the document-independent
popularity and the within-document burstiness of each topic.

& ~D(B);  p(®iB) oo

v=1

K
I( = ) i—1
6:~D(e);  plula) = —2=1) [Tgu.
i=1 F(ai) i=1
s CHOOSE THE TOPIC OF EACH TOKEN. The topic zg, for each
token index n is chosen from the document topic distribution.

Zdn ™~ M(ed) ; p(zdn = iled) = Gdi e

= CHOOSE EACH TOKEN. Each token w at each index is chosen from
the multinomial distribution associated with the selected topic.

Wan ~ M(,, ); P(Wan = v|2dn =1, @;) = Piv -

Mechanism. LDA provides the mechanism for finding patterns of
term co-occurrence and using those patterns to identify coherent topics.
Suppose that we have used LDA to learn a topic i and that for term v,
p(w = v|z = 1) is high. As a result of the LDA generative process, any
document d that contains term v has an elevated probability for topic
i, that is, p(zgn’ = t|wgn = v) > p(2gns = i). This in turn means that
all terms that co-occur with term v are more likely to have been gen-
erated by topic 4, especially as the number of co-occurrences increases.
Thus, LDA results in topics in which the terms that are most probable
frequently co-occur with each other in documents.

Moreover, LDA also helps with polysemy. Consider a term v with
two distinct meanings in topics 7 and ¢. Considering only this term, the
model places equal probability on topics 7 and i. However, if the other
words in the context place a 90% probability on ¢ and only a 9% prob-
ability on 4’, then LDA will be able to use the context to disambiguate
the topic: it is topic ¢ with 90% probability.
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Wallach et al. [60] show that the symmetry or asymmetry of the
Dirichlet priors strongly influences the mechanism. For the topic-specific
term distributions, a symmetric Dirichlet prior provides smoothing so
that unseen terms will have non-zero probability. However, an asym-
metric prior would equally affect all topics, making them less distinctive.

In contrast, they showed that an asymmetric prior for the document-
specific topic distributions made LDA more robust to stop words and
less sensitive to the selection of the number of topics. The stop words
were mainly relegated to a small number of highly probable topics that
influence most documents uniformly. The asymmetric prior also results
in more stable topics, which means that additional topics will make
small improvements in the model instead of radically altering the topic
structure. This is similar to the situation of LSI, where performance
is optimal when X scales the contribution of each dimension according
to its eigenvalue. In the same way, LDA will perform best if a is non-
uniform and corresponds to some natural values characteristic of the
dataset.

One disadvantage of LDA is that it tends to learn broad topics. Con-
sider the case where a concept has a number of aspects to it. Each of
the aspects co-occurs frequently with the main concept, and so LDA
will favor a topic that includes the concept and all of its aspects. It will
further favor adding other concepts to the same topic if they share the
same aspects. As this process continues, the topics become more diffuse.
When sharper topics are desired, a hierarchical topic model may be more
appropriate.

Likelihood. Training an LDA model involves finding the optimal
set of parameters, under which the probability of generating the training
documents is maximized. The probability of the training documents
under a given LDA model is called the empirical likelihood £. It can
also be used to identify the optimal model configuration using Bayesian
model selection.

M N

L =] I p(wanlzdn, ®)p(24n|04)p(84])p(B]B)

d=1n=1

K

5

o Oy — L He‘““l i Wﬁ Hasﬁ 1
HI‘( i=1

Unfortunately, the direct optimization of the likelihood is problem-
atic because the topic assignments zg4, are not directly observed. Even
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inference for a single document is intractable. We describe two different
approximations for LDA. Collapsed Gibbs sampling samples a value for
each z4, in turn, conditioned on the topic assignments for the other to-
kens. Variational Bayes approximates the model with a series of simpler
models that bound the likelihood but neglect the troublesome depen-
dencies.

3.2.2 Collapsed Gibbs. Gibbs sampling is commonly used to
estimate the distribution of values for a probability model when exact
inference is intractable. First, values are assigned to each variable in
the model, either randomly or using a heuristic. Each variable is then
sampled in turn, conditioned on the values of the other variables. In
the limit of the number of iterations, this process explores all config-
urations and yields unbiased estimates of the underlying distributions.
In practice, Gibbs sampling is implemented by rejecting a large num-
ber of samples during an initial burn-in period and then averaging the
assignments during an additional large number of samples.

In collapsed Gibbs sampling, certain variables are marginalized out of
the model. Griffiths and Steyvers [32] propose collapsed Gibbs sampling
for LDA, with both € and ® marginalized. Only 2y, is sampled, and
the sampling is done conditioned on a, # and the topic assignments of
other words Zg,.

p(zdnlzdn) x (Ndz + az)(Nzw + ;6) .

The N statistics do not include the contribution from the word being
sampled, and must be updated after each sampling.

The equation makes intuitive sense. A topic that is used frequently
in the document has a higher probability in 8 and so is more likely for
the current token also. This characteristic corresponds to the burstiness
observed in documents [19]. Similarly, a topic that is frequently assigned
for the same term corpus-wide is more likely to be correct here also.

After burn-in, the implementation can keep statistics of the number
of times each topic is selected for each word. These statistics can then be
aggregated and normalized to estimate the topic distributions for each
document or word. To apply a trained model to additional documents,
the only change is that the V,,, statistic is not updated.

3.2.3 Variational Approximation. Variational approxima-
tion provides an alternative algorithm for training an LDA model. We
will first consider the case of inferring the topics of a document given
an existing LDA model, before we explain how the model is trained. A
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Figure 5.2. Diagram of the LDA variational model

direct approach for topic inference is to apply Bayes’ rule:

p(O.ws) _J7p(d,0,Z|e, f)dZ
p(wd) fZ,Hp(d’eazlaaﬂ)dng’

p(Olwq) =

where Z = {z1,23,...,2n}. However, the marginalization in both nu-
merator and denominator is intractable. The Variational Bayesian ap-
proach provides an approximate solution; instead of inferring the latent
variables by directly marginalizing the joint distribution p(wq, 8, Z|c, 8),
it uses a much simpler distribution as a proxy and performs the inference
through optimization.

Variational inference approximates the true posterior distribution of
the latent variables by a fully-factorized distribution—this proxy is usu-
ally referred to as the variational model, which assumes all the latent
variables are independent of each other. For LDA,

N N
9(Z,017, ¢) = a(017) [ ] a(znlébn) =D 9I7H EN)

n=1

Essentially, this variational distribution is a simplification of the original
LDA graphical model by removing the edges between the nodes @ and Z
(Figure 5.2). The optimal approximation is achieved by optimizing the
distance (for example, the KL divergence) between the true model and
the variational model:
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It can be shown that the above KL-divergence is the discrepancy between
the true log-likelihood and its variational lower-bound that is used in the
variational EM algorithm (described later in this section) for estimating
the LDA hyperparameters « and 3.

The optimization has no close-form solution but can be implemented
through iterative updates,

N

Y=+ Y b Bni X Baw, exp[U(1)],

n=1

where ¥(-) is the bi-gamma function.

Variational EM for parameter estimation. We can learn a
LDA topic model by maximizing the likelihood of the corpus.

M
1
max Z og p(wala, B)

=max Zlog/gdz (wa, 04, Zg|o, B)dO4dZ g .

Again, it involves intractable computation of the marginal distribution
and we therefore resort to variational approximation, which provides a
tractable lower bound,

S lng('LUdla, IB)a

where L(, ¢) = Eq[log p(wq, 8, Z) —log q] is the variational lower bound
for the log-likelihood. The maximum likelihood estimation therefore
involves a two-layer optimization,

M

max max L(7,4,
ouf 4 b (Yar Ha) -

The inner-loop (the optimization with respect to v and ¢, referred to
as the Variational E-step) goes through the whole corpus and performs
variational approximation for each of the documents, which ends up with
a tight lower bound for the log-likelihood. Then the M-step updates the
model parameters (a and ) by optimizing this lower-bound approxi-
mation of the log-likelihood. The E- and M-steps are alternated in an
outer loop until convergence.
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In the E-step, 7 and ¢ are alternately optimized for each document—
in practice, 20 iterations is adequate for a good fit. The outer loop
may need to be repeated hundreds of times for full convergence. For
best results, the likelihood of a separate validation corpus controls early

stopping.

3.24 Implementations. There have been substantial efforts
in developing efficient and effective implementations of LDA, especially
for parallel or distributed architectures. In order to provide a quick
hands-on experience, we list a few implementations that are open-source
or publicly accessible in Table 5.1.

Table 5.1. Publicly-accessible implementations of LDA.

Name Language Algorithm Reference

LDA-C C Var. EM Wuw.cs.princeton.edu/blei/lda-c
Mallet Java Gibbs mallet.cs.umass.edu
GibbsLDA++ C++ Gibbs gibbslda.sourceforge.net
Gensim Python Gibbs nlp.fi.muni.cz/projekty/gensim
Matlab-LDA Matlab Gibbs psiexp.ss.uci.edu/programs_data
4. Interpretation and Evaluation

We have looked at three methods for dimension reduction of textual
data. These methods have much in common: they identify the relation-
ships of terms and documents to the dimensions of a latent semantic
space. Intuitively, the latent dimensions correspond to concepts or top-
ics that are meaningful to the authors. In this section, we discuss how to
jump from the mathematical representations to meaningful topics, how
to evaluate the resulting models and how to apply them to applications.

4.1 Interpretation

The common way to interpret the topic models that are discovered by
dimension reduction is through inspection of the term-topic associations.
Typically, practitioners examine the five to twenty terms that are most
strongly associated with each topic, and attempt to discern the com-
monality. For LSI, the terms can be sorted according to the coefficient
corresponding to the given feature in the semantic space. For the proba-
bilistic models, the terms are sorted by the probability of generating the
term conditioned on the topic. This approach was popularized following
Blei et al. [13], and is generally used to report qualitative topic model
results even though it has many disadvantages. The chief problem is
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that the top terms are often dominated by globally probable terms that
may not be representative of the topic. Stop word removal and varia-
tions on IDF weighting both help substantially, but the characterization
is sensitive to the precise method used to order terms. Mei et al. [47]
provide an alternative approach that automatically selects a portion of
a document to use as a label for each topic. Buntine and Jakulin [16]
provide a more general framework for interpreting topic models.

4.2 Evaluation

There are three main approaches to evaluating the models resulting
from dimension reduction. The fit of the models to test data is im-
portant for understanding how well the models generalize to new data,
but application-driven metrics are also essential if the model is to be
useful. When it is necessary for a human to interact with the model,
interpretability should also be evaluated.

Fit of test data. A very common approach is to train a model on a
portion of the data and to evaluate the fit of the model on another por-
tion of the data. For LSI, the test documents can be projected into the
latent semantic space and then the #3 error introduced by the approxi-
mation can be calculated. The probabilistic models can be evaluated by
computing the probability of generating the test documents given the
model.

Perplexity [4] is the most common way to report this probability.
Computed as

1 M Na '
exp <_ﬁ Z Z logp(wdn|model)> ;

d=1n=1

the perplexity corresponds to the effective size of the vocabulary. For
example, a value of 100 indicates that the probabilities resulting from the
model are equivalent to randomly picking each word from a vocabulary
of 100 words. This means that smaller values indicate that the model
fits the test data better.

Wallach et al. [61], evaluate several different ways to compute this
probability and recommended the left-to-right method, in which the
probability of generating each token in a document is conditioned on
all previous tokens in the document so that the interaction between the
tokens in the document are properly accounted for.

Application performance. Another common approach is to mea-
sure the utility of topic models in some application. Whenever the di-
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mension reduction is being carried out with a specific application in
mind, this in an important evaluation. For example, Wei and Croft
[65] discuss the evaluation of LDA models for document search using
standard information retrieval metrics.

Interpretability. For text mining, the ability to use the discovered
models to better understand the documents is essential. Unfortunately,
the fit of test data and application performance metrics completely ig-
nore the topical structure. In fact, models with better perplexity are
often harder to interpret [18]. This is not surprising, because the task of
finding a meaningful model that fits well is more constrained than the
task of finding any model that fits well, so the best fit is likely to be
found using a less meaningful model.

Chang et al. [18] propose a new evaluation protocol based on a user
study. Starting with a list of top terms for each topic that has been
tainted with an additional term, users are asked to identify the spurious
term. User performance on this task is higher when the topic is coher-
ent so that the extra term stands out. They also conducted a similar
experiment to measure the appropriateness of topic assignments to test
documents.

4.3 Parameter Selection

Asuncion et al. [3] compare a variety of different algorithms for the
LDA model. They found that with careful selection of the regularization
hyperparameters a and f, all of the algorithms had similar perplexity.
A grid search over possible values yields the best performance, but in-
terleaving optimization of the hyperparameters with iterations of the
algorithm is almost as good with much less computational cost.

4.4 Dimension Reduction

Latent topic models, including LSI, PLSI and LDA, are commonly
used as dimension reduction tools for texts. After the training process,
the document d can be represented by its topic distribution p(z|d), where
z can be viewed as a K-dimensional representation of the original docu-
ment. The similarity between documents can then be measured by their
similarity in the topic space.

K
Sawr =) p(z|d)p(zld") .
z=1

Through this equation, documents are projected into a low dimensional
space. The terms are projected into a K-dimensional space in the same
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way. For probabilistic topic models, KL divergence can be used for an
alternative comparison.

Handling of synonymy is a natural result of dimension reduction. Mul-
tiple terms associated with the same concept are projected into the same
place in the latent semantic space. Polysemy presents a more difficult
challenge. Griffiths and Steyvers [31] found that LSI was able to detect
polysemy: a term that was projected onto multiple latent dimensions
generally had multiple meanings. LDA can resolve polysemy provided
that one of the topics associated with a polysemous term is associated
with additional tokens in the document.

5. Beyond Latent Dirichlet Allocation

LDA has many advantages for topic modeling, including its relative
simplicity to implement and the useful topics that it unearths. However,
with additional effort topic modeling can be adapted to the characteris-
tics of a particular problem. In this section, we survey recent advances
that make it practical to apply topic modeling to very large text corpora,
dynamic data, data that is embedded in a network and other problems
with special characteristics.

5.1 Scalability

Standard LDA learning algorithms read the documents in the training
corpus numerous times and are inherently serial. In practice, this means
that LDA models are trained on only a small fraction of the available
data. However, recent advances in online and parallel algorithms make
it reasonable to train and apply models at very large scale.

Efficient parallel implementations are available based on either col-
lapsed Gibbs sampling or variational approximation. Smola et al. [56]
perform Gibbs sampling based on slightly outdated term and topic statis-
tics in parallel with threads that globally update the statistics. Using
variational approximation, Asuncion et al. [3] interleave an inference
step on all documents with a parallel aggregation of the term and topic
statistics. Both of these methods achieve scalability through approxi-
mations that have no known convergence guarantee. In contrast, Yan et
al. [66] and Liu et al. [43], use careful scheduling to achieve strong par-
allelization without approximation. However, the approximate methods
are easier to implement correctly and work very well in practice.

5.2 Dynamic Data

Numerous approaches are possible when the corpus of documents is
changing over time or must be processed as a stream. One common
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approach is to augment the corpus with the time of each document
and incorporate time into the model. Wang and Agichtein [64] model
the revision history of documents by considering the temporal dimension
and extend LSI to tensor factorization. PLSI can be similarly augmented
to model the temporal patterns of activities in videos [59]. Mglgaard et
al. [50] study temporal PLSI for music retrieval, which can be viewed as
a probabilistic model for tensor factorization. Blei and Lafferty modeled
time evolution of topic models [10] to analyze how the topics used in a
corpus changed over time.

For streaming data, Yao et al. [72] present a time and space efficient
algorithm for applying an existing topic model to a stream of documents,
using a modification of Gibbs sampling. Hoffman et al. [35] developed
an online algorithm for LDA that retrains the model for each document
in turn. Interestingly, they found that this approach did not sacrifice
any quality in the learned model as measured using perplexity. They
further show that the online algorithm corresponds to stochastic gradi-
ent descent on the variational objective function, and so converges to a
stationary point of that function.

The online training process for LDA optimizes each document in turn.
First, it uses standard variational approximation to estimate the proba-
bility distribution for the topic of each word ¢;. Next, topic models &,
are estimated as if the corpus consisted of M copies of this document,
based on ¢;.

®;; = B+ MN;gps;.

The estimate of the topic models ®; are then updated to include the
contribution from this document by

By (Bij + p®i5)/(1 + p),

where p = (tg+1t) ™" when processing the ¢-th document. tg is a parame-
ter that slows the algorithm during the early iterations and 0.5 < kK < 1
is a parameter that controls the rate of learning. This algorithm is es-
sentially the variational algorithm applied to a different single document
on each iteration, with appropriate changes to how the topic models are
updated. For very large datasets, this is many times faster than other
algorithms and yet yields very excellent results.

5.3 Networked Data

Networks play an important role in many text mining problems. Email
messages are linked to the senders and recipients. Publications are also
linked by citations. Many documents are related to a social network.
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The analysis of these documents can reveal more interesting structure if
the network graph can be incorporated.

LSI has been applied to analysis network data. Ng et al. analyze
the connection between the LSI and HIST [51], which is a widely used
algorithm for network data. Other approaches learn low-dimensional
representations of documents based on both their contents and the cita-
tion graph between them through learning from multiple relationships
between different types of entities [69, 76].

PLSI has also been applied to analyze the network data. Cohn and
Chang apply PLSI to model the citation graph and identity authori-
tative document based on the latent factors [21]. Citations between
documents can be modeled together with the contents of the documents
in a joint probabilistic model [20], through the probability of generating
a citation given a latent topic. Guo et al. [34] model the interaction of
topics between linked documents. Intuitively, the topics of a document
are borrowed from the documents to which it links. Deng et al. [25] pro-
pose the two frameworks based on random walk and regularization to
propagate the topics of documents according to the links between them.

We describe the work of Mei et al. [46] in detail since it is repre-
sentative of combining PLSI and network analysis. This work utilizes
the network structure as the regularization for PLSI through assum-
ing that the topic distributions are similar for documents connected to
each other. The regularization term induced from the structure of the
network is optimized together with the log-likelihood function of PLSI.
The model is applied to several applications such as author-topic analy-
sis and spatial topic analysis, where network structures are constructed
from co-authorships and adjacency of locations, respectively.

Much research has explored various ways to integrate network infor-
mation into topic models. Rosen-Zvi et al. incorporate authorship in-
formation through author-specific topic mixtures [55]. Supervised topic
models allow the per-topic term distributions to depend on a document
label [12]. Chang and Blei incorporate relational information between
documents [17]. It is also possible to integrate general first order logic [2].
McCallum et al. extend LDA so that it can identify topic models that
are conditioned on the author and the audience of the communication
[45]. This is useful for analyzing the social dynamics of communication

in a network.

Relational topic models (RTM) extend LDA to jointly model the gen-
eration of documents and the generation of links between documents
[17]. The model predicts links based on the similarity of the topic mix-
ture used in two documents, which adds the capability of predicting
missing links in the graph structure. Because the links influence the
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selection of topics, the model can more accurately predict links than a
similar prediction based on topics from LDA.

The generative process of documents is the same for RTM as for LDA.
Once the documents are generated, the link \g. between documents d
and e is generated from exponential regression on the empirical topic
mixtures Z4 and Z,,

Ade = €xp (nT(Zd ° Ze) + V) >

where Zg = 1/Ny Zﬁy:l Zgn and a o b is the element-wise product of
vectors a and b. Typically the link is taken to be binary, in which case v
is used to control the threshold. 7 is a parameter that must be learned
which controls the importance of each topic in establishing the link. We
generally expect it to have positive values, although a negative value in
a social network would reflect the adage that opposites attract.

5.4 Adapting Topic Models to Applications

The graphical model of LDA can be easily extended to match the
characteristics of a specific application. Here we survey some of the
fruitful approaches.

One important class of extensions to LDA has been the introduction
of richer priors for document topic and term distributions. Instead of
using a fixed, global Dirichlet hyperparameter « for all the documents in
a corpus, Mimno and McCallum use regression from document features
to establish a document-specific c [48]. This is a valuable enhancement
when other meta-features are available that are expected to influence
the selected topics, as, for example, the identity of the author, the pub-
lication venue and the dates.

The Bayesian hierarchy of LDA provides a useful modeling pipeline for
data with complex structure. The hierarchy can model web-like intercon-
nections and uncertain labels [67, 71]. The mized membership stochastic
block model coupled two LDA hierarchies to model inter-connected en-
tities [1], which provides a flexible model for network graphs and has
proven useful for a variety of applications ranging from role discovery to
community detection in social, biological and information networks.

Hierarchical topic models (hLDA) are used to identify subtopics that
are increasingly more specific [9]. The hLDA model automatically learns
a tree structure hierarchy for topics while they are discovered from the
documents. For additional flexibility, hierarchical Dirichlet processes
[67] can automatically discover an appropriate number of topics and
subtopics. There are also principled ways to learn correlations between
topics [11, 41]. Other extensions support richer document representa-
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tions and contextual information, including bigrams [62], syntactic rela-
tionships [15, 33] and product aspects [58].

Multinomial distributions for term occurrences usually have a difficult
time modeling the word burstiness in language — if a word appears in a
document once, it will likely appear again in the same document. This
effect is commonly referred to as Zipf’s law, a profound characteristic
of language. To discount this impact, Doyle and Elkan replace the per-
topic Multinomial distribution with a Dirichlet-Compound Multinomial
(also called the multivariate Polya) distribution) [27]. Reisinger et al.
substitutes spherical admixture models [54], which not only incorporate
negative correlations among term occurrence but also admit the natural
use of cosine similarity to compare topics or documents.

Standard topic models are not appropriate for identifying consistent
topics across multiple languages, because the multiple languages do not
co-occur in documents frequently enough to be assigned into the same
topics. Mimno et al. developed an extension that works with loosely
aligned documents [49]—pairs of documents in different languages that
have nearly the same mixture of topics. Boyd-Graber and Blei explore
various strategies for discovering multilingual topics from unaligned doc-
uments [14]. Similar issues arise with documents in multiple dialects.
Crain et al. [22] and Yang et al. [68] discuss extensions of LDA that
find shared topics between consumer and technical medical documents.

6. Conclusion

Using a BOW representation results in very efficient text mining be-
cause more complex factors like grammar and word order can be ne-
glected. However, working directly with individual terms has a number
of strong limitations, because multiple documents can discuss the same
ideas using very different words, and likewise, the same word can have
very different meanings. Dimension reduction is able to lift the BOW
representation to a more abstract level that better reflects the needs
of a human analyst, where the new dimensions correspond to concepts
or topics. In this way, alternative ways of expressing the same content
can be reduced to a common representation and terms with multiple
meanings can be identified.

LSI is based on a spectral analysis of the term-document matrix.
This approach identifies common generalizations that are guaranteed to
provide the best lower-dimensional representation of the original data.
This representation is not necessarily easy to interpret, but is very useful
for performing a conceptual match between two documents that may use
different terms for the same concepts.
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Probabilistic topic models provide an intuitive, probabilistic founda-
tion for dimension reduction. They allow us to reason about the topics
present in a document and expose the probability of seeing each word
in any given topic. This makes it much easier to interpret what the
topics mean. It also makes it easier to extend the models in interesting
ways. Many extensions to PLSI and LDA have been developed, both to
allow them to be applied to large scale data and to incorporate special
structure for a particular application.
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