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Need for “random” data 

• Games  

• Simulations, … 

• Crypto 

– Symmetric keys 

– Asymmetric keys 

– Padding/salt 

– Initialization vectors 

– Challenges (for challenge – response protocols) 

– … 

 



“Random” data 

• Sometimes (games, simulations) we only need data 

with some statistical properties 

– Evenly distributed numbers (from an interval) 

– Long and complete cycle 

• Large number of different values 

• All values can be generated 

• In crypto we also need unpredictability 

– Even if you have seen all the “random” data generated 

until now you have no idea what will be the random data 

generated next 



“Random” data generators 

• Insecure random number generators 

– noncryptographic pseudo-random number generators 

– Often leak information about their internal state with each output 

• Cryptographic pseudo-random number generators (PRNGs) 

– Based on seed deterministically generate pseudorandom data 

• “True” random data generators 

– Entropy harvesters 

– gather entropy from other sources and present it directly 



What (pseudo)random data to use? 

• Avoid using noncryptographic random number 
generators 

• For many purposes the right way is to get the seed 
from the true random number generator and then 
use it in the pseudorandom number generator 
(PRNG) 
– PRNG are deterministic, with the same seed they produce 

the same pseudorandom sequence 

• There are situations, where PRNG are not enough 
– E.g. one time pad 



Noncryptographic generators 

• Standard rand()/srand(), random ()/srandom() 

functions 

– libc 

• “Mersenne Twister” 

• linear feedback shift registers 

• Anything else not labeled as cryptographic PRNG… 

 

• Not to be used for most purposes…. 



Noncryptographic generators 

Source: http://xkcd.com/ 

Source: Writing secure code, 2nd edition 



PRNG 

• Cryptographic pseudo-random number generators 
are still predictable if you somehow know their 
internal state. 

• Assuming the generator was seeded with sufficient 
entropy and assuming the cryptographic algorithms 
have the security properties they are expected to 
have, cryptographic generators do not quickly 
reveal significant amounts of their internal state. 

• Protect the seed of the PRNG! 

• Entropy of the seed matters! 



Entropy of the seed 

How much entropy do we need to seed a cryptographic generator securely? 

 

Give as much entropy as the random number generator can accept. The entropy you get 

sets the maximum security level of your data protected with that entropy, directly or 

indirectly.  

 

E.g.  If a 256-bit AES key is obtained with a PRNG seeded with 56 bits of entropy, then any 

data encrypted with the 256-bit AES key will be no more secure than encrypted with a 56-bit 

DES key. 

 
 

 
Source: Secure programming Cookbook 



Entropy estimates 

• Entropy 

– Definition Shannon 

– Definition Min-entropy 

• Difficulty of measurement/estimates 

– For example, the digits of π appear to be a completely 

random sequence that should pass any statistical test for 

randomness. Yet they are also completely predictable. 



Entropy estimates 
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sequence=110010111110100100110011101001111110001010111101001010

01001111100101100111011111 (80 bits) 



Entropy estimates 

• After figuring out how much entropy is in a piece of data (e.g. 
expected entropy is 160 bits), it is wise to divide the estimate 
by a factor of 4 to 8 to be conservative. 

• Because entropy is easy to overestimate, you should 
generally cryptographically postprocess any entropy 
collected (a process known as whitening) before using it. 
– E.g. use hash functions (SHA2) 

• As most PRNG take a fixed-size seed, and you want to 
maximize the entropy in that seed. However, when collecting 
entropy, it is usually distributed sparsely through a large 
amount of data.  
– E.g. use hash functions (SHA2) 



Tips on collecting entropy 

• Make sure that any data coming from an entropy-producing source is postprocessed 
with cryptography to remove any lingering statistical bias and to help ensure that your 
data has at least as many bits of entropy input as bits you want to output.  

 

• Make sure you use enough entropy to seed any pseudo-random number generator 
securely. Try not to use less than 128 bits. 

 

•  When choosing a pseudo-random number generator, make sure to pick one that 
explicitly advertises that it is cryptographically strong. If you do not see the word 
“cryptographic” anywhere in association with the algorithm, it is probably not good for 
security purposes, only for statistical purposes. 

 

• When selecting a PRNG, prefer solutions with a refereed proof of security bounds. 
Counter mode, in particular, comes with such a proof, saying that if you use a block 
cipher bit with 128-bit keys and 128-bit blocks seeded with 128 bits of pure entropy, and 
if the cipher is a pseudo-random permutation, the generator should lose a bit of entropy 
after 264 blocks of output. 

 

• Use postprocessed entropy for seeding pseudo-random number generators or, if 
available, for picking highly important cryptographic keys. For everything else, use 
pseudo-randomness, as it is much, much faster. 

Source: Secure programming Cookbook 



Unix Infrastructure 

• Special files – reading files provides 
(pseudo)random data 
– /dev/random 

• Always produces entropy 

• Provides random data 

• Can block the caller until entropy available (blocking) 

– /dev/urandom 

• Based on cryptographic pseudorandom generator 

• Amount of entropy not quaranteed 

• Always returns quickly (non-blocking) 

 



Unix Infrastructure 

• Available on most modern Unix-like OS 
– Including Linux, *BSD, etc. 

• Each OS implements the functionality 
independently 
– Quality of the implementation can vary from OS to OS 

• Usually no need to worry 

• The core of the system is the seed of PRNG 
– The entropy of the seed may be low during/just after 

booting (in particular at diskless stations, virtual HW etc.) 

– The seed is often saved at shutdown 



Unix infrastructure 

• Operation on files 

– To get entropy use open the file and read it 

• use read(2)  

• it returns number of bytes read 

• short read (even 0 if interrupted by a signal) 

• It is also possible to write to /dev/random.  

– This allows any user to mix random data into the pool.  

– Non-random data is harmless, because only a privileged user 
can issue the ioctl needed to increase the entropy estimate.  

• Linux 

– The current amount of entropy and the size of the Linux kernel 
entropy pool are available in /proc/sys/kernel/random/. 

 



Example: Linux 



Example: Linux 



Example: FreeBSD 

• FreeBSD implements a 256-bit variant of the Yarrow algorithm, intended to provide a 

cryptographically secure pseudorandom stream—this replaced a previous Linux style 

random device. Unlike the Linux /dev/random, the FreeBSD /dev/random device never 

blocks. Its behavior is similar to the Linux /dev/urandom, and /dev/urandom on 

FreeBSD is linked to /dev/random. 

 

• Yarrow is based on the assumptions that modern PRNGs are very secure if their 

internal state is unknown to an attacker, and that they are better understood than the 

estimation of entropy. Whilst entropy pool based methods are completely secure if 

implemented correctly, if they overestimate their entropy they may become less secure 

than well-seeded PRNGs. In some cases an attacker may have a considerable amount 

of control over the entropy, for example a diskless server may get almost all of it from 

the network—rendering it potentially vulnerable to man-in-the-middle attacks. Yarrow 

places a lot of emphasis on avoiding any pool compromise and on recovering from it as 

quickly as possible. It is regularly reseeded; on a system with small amount of network 

and disk activity, this is done after a fraction of a second. 

Source: Wikipedia 



MS Windows – (pseudo)random data 

• Function CryptGenRandom() 

– Part of MS CryptoAPI 

• First use CryptAcquireContext( ) 

• and then CryptGenRandom() 

– Based on PRNG 

• Internally CryptGenRandom() is using 

RtlGenRandom() 

– Direct call of RtlGenRandom() possible 

– Does not require loading Crypto API 



MSDN: CryptGenRandom() 

Source: MSDN 



MSDN: RtlGenRandom() 

Source: MSDN 



CryptGenRandom() vs. RtlGenRandom() 

 

"Historically, we always told developers not to use functions such as rand to 

generate keys, nonces and passwords, rather they should use functions like 

CryptGenRandom, which creates cryptographically secure random numbers. The 

problem with CryptGenRandom is you need to pull in CryptoAPI 

(CryptAcquireContext and such) which is fine if you're using other crypto functions. 

 

On a default Windows XP and later install, CryptGenRandom calls into a function 

named ADVAPI32!RtlGenRandom, which does not require you load all the CryptAPI 

stuff. In fact, the new Whidbey CRT function, rand_s calls RtlGenRandom". 
 

Source:http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx 



CryptGenRandom() documentation 

 

With Microsoft CSPs, CryptGenRandom() uses the same random number generator used by other 

security components. This allows numerous processes to contribute to a system-wide seed. CryptoAPI 

stores an intermediate random seed with every user. To form the seed for the random number generator, 

a calling application supplies bits it might have—for instance, mouse or keyboard timing input—that are 

then combined with both the stored seed and various system data and user data such as the process ID 

and thread ID, the system clock, the system time, the system counter, memory status, free disk clusters, 

the hashed user environment block. This result is used to seed the pseudorandom number generator 

(PRNG). In Windows Vista with Service Pack 1 (SP1) and later, an implementation of the AES counter-

mode based PRNG specified in NIST Special Publication 800-90 is used. In Windows Vista, Windows 

Storage Server 2003, and Windows XP, the PRNG specified in Federal Information Processing Standard 

(FIPS) 186-2 is used. If an application has access to a good random source, it can fill the pbBuffer buffer 

with some random data before calling CryptGenRandom(). The CSP then uses this data to further 

randomize its internal seed. It is acceptable to omit the step of initializing the pbBuffer buffer before 

calling CryptGenRandom(). 
 

Source: MSDN 



Design of the old Windows PRNG (up to Vista) 

Source: Writing secure code, 2nd edition 



The entropy in Windows comes from … 

Source: Writing secure code, 2nd edition 



Random data in openSSL 

• OpenSSL exports its own API for manipulating random numbers. It 
has its own cryptographic PRNG, which must be securely seeded. 

• To use the OpenSSL randomness API, you must include 
openssl/rand.h in your code and link against the OpenSSL crypto 
library. 

• void RAND_seed(const void *buf, int num); 

• void RAND_add(const void *buf, int num, double entropy); 

• int RAND_load_file(const char *filename, long max_bytes); 

– Pure entropy expected 

• int RAND_write_file(const char *filename); 

– To save the state of PRNG 

• int RAND_bytes(unsigned char *buf, int num); 



HW random number generators 

• Require specific devices 
– More or less common 

– Price 

• LavaRnd (Lava Lamp) 

• Random.org 

• Special devices 

• Crypto devices 
– Smartcard 

– HSM 

– SSL cards  



PRNG Standards 

• FIPS 186-2 (replaced later by -3 and -4) 

• NIST SP 800-90A  
– Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators 

– Hash_DRBG 

– HMAC_DRBG 

– CTR_DRBG 

– Dual EC DRBG (problematic) 

• Fortuna 

• ANSI X9.17-1985, Appendix C 

• ANSI X9.31-1998, Appendix A.2.4 

• ANSI X9.62-2005, Annex D 

 



(P)RNG Standards 

• NIST SP 800-90B 

– Recommendation for the Entropy Sources Used for 

Random Bit Generation 

• NIST SP 800-90C 

– Recommendation for Random Bit Generator (RBG) 

Constructions 



ANSI X9.17 

• ANSI X9.17 standard  

– It takes as input a TDEA (with 2 DES keys) key bundle k and 
(the initial value of) a 64 bit random seed s. Each time a random 
number is required it:  

• Obtains the current date/time D to the maximum resolution 
possible. 

• Computes a temporary value t = TDEAk(D) 

• Computes the random value x = TDEAk(s  t)  

• Updates the seed s = TDEAk(x  t) 

– Obviously, the technique is easily generalized to any block 
cipher  

• AES has been suggested… 



ANSI X9.17 



ANSI X9.31  

Pseudorandom data 

Internal state Timestamp 



ANSI X9.31 

• Security of X9.31 is not considered sufficient 

• Bad recovery after internal state compromise 

• The only entropy added later are the timestamps 

• The entropy of timestamps is problematic 

• Too much dependent on the entropy of initial values 

of 

– The seed 

– The symmetric encryption keys (3DES or AES) 



Fortuna 

• Designed by Bruce Schneier and Niels Ferguson 

• Follower of the Yarrow algorithm 

• Efforts to recover quickly from the internal state 

compromise 

• Adding entropy frequently 

• Fortuna is state of the art 



Fortuna 

• It is composed of : 

– Generator: produces pseudo-random data. 

• Based on any good block cipher (e.g. AES, Serpent,Twofish). Cipher is 

running in counter mode, encrypting successive values of an 

incrementing counter. Key is changed periodically (no more than 1 MB 

of data + key changed after every data request). 

– Entropy accumulator: collects genuinely random data and  reseeds the 

generator. 

• The entropy accumulator is designed to be resistant against injection 

attacks thanks to the use of 32 pools of entropy (at the nth reseeding of 

the generator, pool k is used only if 2k divides n). 

– Seed file: stores state 



NIST SP 800-90A 

• NIST Special Publication 800-90A 

– Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators 

• Mechanisms based on hash functions 

– Hash_DRBG 

– HMAC_DRBG 

• Mechanisms based on block ciphers 

– CTR_DRBG 

• Mechanisms Based on Number Theoretic Problems 

– Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG) 



ECC NIST random number generator 

(Dual_EC_DRBG) 

• Problematic 

• Even more problematic after Snowden 

 

The Guardian and The New York Times have reported that the National Security Agency (NSA) 

inserted a CSPRNG into NIST SP 800-90 that had a backdoor which allows the NSA to readily decrypt 

material that was encrypted with the aid of Dual_EC_DRBG. Both papers report that, as independent 

security experts long suspected, the NSA has been introducing weaknesses into CSPRNG standard 

800-90; this being confirmed for the first time by one of the top secret documents leaked to the 

Guardian by Edward Snowden. The NSA worked covertly to get its own version of the NIST draft 

security standard approved for worldwide use in 2006. The leaked document states that "eventually, 

NSA became the sole editor.“In spite of the known potential for a backdoor and other known significant 

deficiencies with Dual_EC_DRBG, several companies such as RSA Security continued using 

Dual_EC_DRBG until the backdoor was confirmed in 2013. 
 

Source:http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator#NSA_backdoor_in_the_Dual_EC_DRBG_PRNG 



Testing randomness 

• Testing whether the generated sequence of bits 

“looks random”, i.e. has got some statistical 

properties 

– E.g. the number of 0s versus the number of 1s in the 

sequence of bits. 

• 2 important test suits 

– NIST 

– Diehard 



NIST tests 

• NIST Special Publication 800-22rev1a  

– “A Statistical Test Suite for the Validation of Random 

Number Generators and Pseudo Random Number 

Generators for Cryptographic Applications” 

– Revised in April 2010 

– Textual description of the tests (+ mathematics/statistics 

behind) 

– Software implementation 

• STS-2.1.2 

Source: NIST Special Publication 800-22rev1a  



NIST tests 

• The 15 tests are: 

– The Frequency (Monobit) Test, 

– Frequency Test within a Block, 

– The Runs Test, 

– Tests for the Longest-Run-of-Ones in a Block, 

– The Binary Matrix Rank Test, 

– The Discrete Fourier Transform (Spectral) Test, 

– The Non-overlapping Template Matching Test, 

– The Overlapping Template Matching Test, 

– Maurer's "Universal Statistical" Test, 

– The Linear Complexity Test, 

– The Serial Test, 

– The Approximate Entropy Test, 

– The Cumulative Sums (Cusums) Test, 

– The Random Excursions Test, and 

– The Random Excursions Variant Test. 

 

Source: NIST Special Publication 800-22rev1a  



NIST test – examples of tests 

Source: NIST Special Publication 800-22rev1a  



Diehard tests 

• Set of statistical tests to verify the quality of random 

number generators. 

• Developed by George Marsaglia. 

• Description of the test and implemetation 

• Alternative GPL implemetation “Dieharder” 

– Contains also implementation of NIST STS tests 



Diehard tests 

• Birthday spacings: Choose random points on a large interval. The spacings between the points should be asymptotically 
exponentially distributed. The name is based on the birthday paradox. 

• Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur 
with statistically equal probability. 

• Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then 
determine the rank of the matrix. Count the ranks. 

• Monkey tests: Treat sequences of some number of bits as "words". Count the overlapping words in a stream. The number of 
"words" that don't appear should follow a known distribution. The name is based on the infinite monkey theorem. 

• Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and count the 
occurrences of five-letter "words". 

• Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 
tries, the number of successfully "parked" circles should follow a certain normal distribution. 

• Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum distance between the 
pairs. The square of this distance should be exponentially distributed with a certain mean. 

• Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is 
the minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean. 

• The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats 
needed to reach 1 should follow a certain distribution. 

• Overlapping sums test: Generate a long sequence of random floats on [0,1). Add sequences of 100 consecutive floats. The 
sums should be normally distributed with characteristic mean and sigma. 

• Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should 
follow a certain distribution. 

• The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow 
a certain distribution. 

 



Using Password to derive cryptokeys 

• Entropy of the password 

– Length 

– Character set 

• Do not use the password directly as key 

• Cryptographically process the password 

– E.g. hash it 

• Derivation should slow (e.g. 1 second) 

– To slow down brute force attacks 



PKCS#5 

• PBKDF1 (Password-Based Key Derivation 

Function 1) 

– Up to 160 bits 

– Old, replaced by newer function 

• PBKDF2 (Password-Based Key Derivation 

Function 2)  



PBKDF2 

• DK = PBKDF2(PRF, Password, Salt, c, dkLen) 

– PRF is a pseudorandom function (output of hlen) 

– c is the number of iterations 

– dkLen is the length of the derived key 

• DK = T1 || T2 || ... || Tdklen/hlen  

– Ti = F(Password, Salt, Iterations, i) 

• F(Password, Salt, Iterations, i) = U1 ^ U2 ^ ... ^ Uc 

– U1 = PRF(Password, Salt || INT_32_BE(i)) 

– U2 = PRF(Password, U1) 

– … 

 

 

 

 

 

 



Debian random number generator flaw 

 

On May 13th, 2008 the Debian project announced that Luciano Bello found an interesting vulnerability in the 

OpenSSL package they were distributing.  The bug in question was caused by the removal of the following line of 

code from md_rand.c  

 

 MD_Update(&m,buf,j); 

 [ .. ] 

 MD_Update(&m,buf,j); /* purify complains */ 

 

These lines were removed because they caused the Valgrind and Purify tools to produce warnings about the use of 

uninitialized data in any code that  was linked to OpenSSL. You can see one such report to the OpenSSL team here. 

Removing this code has the side effect of crippling the seeding process for the OpenSSL PRNG. Instead of mixing in 

random data for the initial seed, the only "random" value that was used was the current process ID. On the Linux 

 platform, the default maximum process ID is 32,768, resulting in a very small number of seed values being used for 

all PRNG operations. 
 

Source: https://www.schneier.com/blog/archives/2008/05/random_number_b.html 



Debian flaw- impact 

This is a Debian-specific vulnerability which does not affect other operating systems which are not 

based on Debian. However, other systems can be indirectly affected if weak keys are imported into 

them. 

 

It is strongly recommended that all cryptographic key material which has been generated by 

OpenSSL versions starting with 0.9.8c-1 on Debian systems is recreated from scratch. Furthermore, 

all DSA keys ever used on affected Debian systems for signing or authentication purposes should 

be considered compromised; the Digital Signature Algorithm relies on a secret random value used 

during signature generation. 

 

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable distribution on 2006-09-17, and 

has since that date propagated to the testing and current stable (etch) distributions. The old stable 

distribution (sarge) is not affected. 

 

Affected keys include SSH keys, OpenVPN keys, DNSSEC keys, and key material for use in X.509 

certificates and session keys used in SSL/TLS connections. Keys generated with GnuPG or 

GNUTLS are not affected, though. 
Source: http://www.debian.org/security/2008/dsa-1571 



Paper: Lousy Random Numbers Cause Insecure 

Public Keys 

In this paper we complement previous studies by concentrating on computational and randomness properties of 

actual public keys, issues that are usually taken for granted. Compared to the collection of certificates considered in 

[12], where shared RSA moduli are "not very frequent", we found a much higher fraction of duplicates. More 

worrisome is that among the 4.7 million distinct 1024-bit RSA moduli that we had originally collected, more than 

12500 have a single prime factor in common. That this happens may be crypto-folklore, but it was new to us, and it 

does not seem to be a disappearing trend: in our current collection of 7.1 million 1024-bit RSA moduli, almost 27000 

are vulnerable and 2048-bit RSA moduli are affected as well. When exploited, it could act the expectation of security 

that the public key infrastructure is intended to achieve. 

 We checked the computational properties of millions of public keys that we collected on the web. The majority does 

not seem to suffer from obvious weaknesses and can be expected to provide the expected level of security. We 

found that on the order of 0.003% of public keys is incorrect, which does not seem to be unacceptable. We were 

surprised, however, by the extent to which public keys are shared among unrelated parties. For ElGamal and DSA 

sharing is rare, but for RSA the frequency of sharing may be a cause for concern. What surprised us most is that 

many thousands of 1024-bit RSA moduli, including thousands that are contained in still valid X.509 certificates, 

offer no security at all. This may indicate that proper seeding of random number generators is still a problematic 

issue....  

Source: https://www.schneier.com/blog/archives/2012/02/lousy_random_nu.html 



Netscape <2: SSL random number weakness 

Source: http://www.hit.bme.hu/~buttyan/courses/Revkomarom/prng.pdf 



Netscape <2: SSL random number weakness 

• Access to the machine with browser 

– pid, ppid is known 

– time can guessed +- 1 second 

– microsecond unknown: 20 bits 

• No access to machine with browser 

– Entropy of the seed increases to max. 47 bits 

• Contrast with 128 bit session key 

Source: http://www.hit.bme.hu/~buttyan/courses/Revkomarom/prng.pdf 



Code red worm: IP list generator 

On July 12, 2001, a worm began to exploit the aforementioned buffer-overflow vulnerability in Microsoft's IIS 

webservers. Upon infecting a machine, the worm checks to see if the date (as kept by the system clock) is 

between the first and the nineteenth of the month. If so, the worm generates a random list of IP addresses and 

probes each machine on the list in an attempt to infect as many computers as possible. However, this first 

version of the worm uses a static seed in its random number generator and thus generates identical lists of IP 

addresses on each infected machine. The first version of the worm spread slowly, because each infected 

machine began to spread the worm by probing machines that were either infected or impregnable. The worm is 

programmed to stop infecting other machines on the 20th of every month. In its next attack phase, the worm 

launches a Denial-of-Service attack against www1.whitehouse.gov from the 20th-28th of each month.  

Code-Red version 2 uses a random seed, so each infected computer tries to infect a different list of randomly 

generated IP addresses. This seemingly minor change had a major impact: more than 359,000 machines 

were infected with Code-Red version 2 in just fourteen hours.  

Source: http://www.caida.org/research/security/code-red/ 



CVE-2014-9293 

• When no authentication key is set in the 

configuration file, ntpd(8) would generate a random 

key that uses a non-linear additive feedback 

random number generator seeded with very few 

bits of entropy.  [CVE-2014-9293] 

• The ntp-keygen(8) utility is also affected by a similar 

issue. [CVE-2014-9294] 



Texas hold’em Poker application 

• Based random number generation on standard 

borland random number generator 

• “Reliable Software Technologies” developed a tool 

that required five cards from the deck to be known. 

Source: http://www.ibm.com/developerworks/library/s-playing/ 



How not to write ransomware 

56 I       

Ransomware for Linux ... they need a random number for the symmetric key 

used to do the encryption. So they call rand() using the system time to 

key the RNG. 

 

But the system time gets recorded in the filesystem for the files that 

are encrypted... 

 

... so the good guys can get the AES key and give you back your files 

Read more at: 

http://labs.bitdefender.com/2015/11/linux-ransomware-debut-fails-on-predictable-encryption-key/ 



Dice-o-matic  

 


