Concurrency vs Security

Petr Rockai

Overview

e Part1: Concurrent Programs
e Part2: Race Conditions
e Part 3: Security Implications

e Part4: Valgrind

Concurrency vs Security 1/39 October 30, 2017

Part 1: Concurrent Programs

Concurrency vs Security 2/39 October 30, 2017

Why Concurrency?

e higher throughput on multicore computers

e serving multiple clients at once

 multiple tasks that are largely independent
How?

 multiprocessing vs multithreading
e different resource vs isolation trade-offs

Concurrency vs Security 3/39

October 30, 2017

What is a Process?

e anisolated address space
e executing a single program
e owns OS-level resources
— (virtual) memory
— access to the CPU
— open file descriptors
— including network connections
e created by fork() on UNIX

Concurrency vs Security 4/39 October 30, 2017

Multiprocessing

example: httpd

each client connection gets a new process
expensive: slow fork, needs more memory
safe: no interference from other processes
less safe but faster: process pools

Concurrency vs Security 5/39

October 30, 2017

What is a Thread?

e asequence of instructions
e each CPU core can run 1 thread at a time
— more with SMT-capable cores (2-8)
— one process can contain many threads
e instructions within a thread run in a sequence
e no guarantees on operation ordering between threads
e also applies to threads from different processes

Concurrency vs Security 6/39 October 30, 2017

Multithreading

think about httpd again

each client connection gets a single thread
threads are lightweight

less context switching overhead

further optimisation: thread pools

Concurrency vs Security 7/39

October 30, 2017

Multithreading in HPC

e HPC = high-performance computing

e threads can share data much more easily
e easier to write fast algorithms

e usually not security-relevant

Concurrency vs Security 8/39 October 30, 2017

The OS Kernel

e alsoruns concurrently with itself

e many processes can be doing system calls at once
e possibly preemptible

e “big kernel lock”: slows everything down

e preemptible kernels: fast but dangerous

Concurrency vs Security 9/39 October 30, 2017

Processes and Communication

e [PC = inter-process communication

e message passing: (relatively) safe but slow
e stdio, sockets or networks: even slower

e shared memory: fast but dangerous

Concurrency vs Security 10/39 October 30, 2017

Example: C / POSIX

*thread(*state)

{

puts ();
}

main()
{

pthread t tid;

pthread create(&tid, NULL, thread, &x);

puts ();

pthread join(tid, NULL);
}

Concurrency vs Security 11/39 October 30, 2017

Example: C++

main()
{
auto f = [] { puts(
std: :thread t(f);
puts ()i
t.join();
}
Concurrency vs Security 12/39

October 30, 2017

Part 2: Race Conditions

Concurrency vs Security 13/39 October 30, 2017

Shared Resources

e memory can be shared by multiple threads
e or even processes, through IPC mechanisms
e when is it safe to access/use a shared resource?

Concurrency vs Security 14/39 October 30, 2017

Race Condition: Example

e consider a shared counter, i
e and the following two threads

1=0;
threadl() { 1 =1 + 1; }
thread2() { 1 =1 - 1; }

What is the value of i after both finish?

Concurrency vs Security 15/39

October 30, 2017

Race Condition: Definition

e (anomalous) behaviour that depends on timing
e typically among multiple threads or processes
e an unexpected sequence of events happens

e recall that ordering is not guaranteed

Concurrency vs Security 16/39 October 30, 2017

Mutual Exclusion

e only one process (thread) can access a resource at once
e ensured by a mutual exclusion device (a.k.a mutex)

e amutex has 2 operations: lock and unlock

e those must be correctly paired up

e Jlock may need to wait until another thread unlocks

Concurrency vs Security 17/39 October 30, 2017

Mutual Exclusion: Deadlocks

e happens if 2 or more threads cannot proceed
e each is waiting for a mutex locked by the other thread
e many other scenarios (not specific to mutexes)

Example

e 2 mutexes: A, B

e first thread locks A first, then B

e second thread locks B first, then A
e race condition on mutexes

Concurrency vs Security 18/39 October 30, 2017

Semaphore

e somewhat more general than a mutex

e allows multiple interchangeable instances of a resource

e and corresponding number of threads in the critical section
e basically an atomic counter

Concurrency vs Security 19/39 October 30, 2017

Shared Resources Revisited

e the file system is also a shared resource
e shared even between processes
e race conditions with other programs
— possibly under the control of the attacker
e same with network resources &c.

Concurrency vs Security 20/39 October 30, 2017

Part 3: Security Implications

Concurrency vs Security 21/39 October 30, 2017

Two Types of Races

e within a single application (program)
— bugs, not necessarily security-relevant
— unexpected behaviour due to sequencing
— eg. deadlocks/livelocks, memory corruption, etc.
— races on file descriptors (write vs close)
e onresources shared with third parties
— file system, network, etc.
— almost always a security problem

Concurrency vs Security 22/39 October 30, 2017

Single-Program Races

e not always, but sometimes security problems

e (CVE-2017-2636: race condition in the Linux kernel

e unprivileged user can cause a timing-related double free
e and possibly gain root privileges

https://al3xpOpOv.github.i0/2017/03/24/CVE-2017-2636.html

Concurrency vs Security 23/39 October 30, 2017

The Systrace Race

e systrace was a BSD syscall restriction tool (sandbox)
e works by interposing every system call

e inspected at runtime by a user-space program

e syscall performed by the kernel if OK'd by the helper
e typical check-perform (TOC-TOU) race condition

Concurrency vs Security 24/39 October 30, 2017

File System: Permission Checks

imagine a program is executing as root

it can send files to users

subject to standard permission checks

what happens if it does stat () to check access
then open the file and send content?

Concurrency vs Security 25/39

October 30, 2017

Exploiting FS Races: Symlink Attacks

e the attacker creates, say, /tmp/innocent

e itrequests access to that file via the above app
e replaces the file after the app doesits stat ()
by asymlink pointing to, say, /etc/shadow

Concurrency vs Security 26/39 October 30, 2017

File System: Changing Ownership

e aprogram creates a file or a directory
e then calls chown to change the owner
e also vulnerable to symlink attacks

e (CVE-2012-6095 (ProFTPd)

Concurrency vs Security 27/39 October 30, 2017

File System: Changing Permissions

e afileis written (with sensitive content)
e it'simmediately chmod-ed
e but the attacker can read it in a narrow time window
e (CVE-2013-2162
e solution:
— set umask (for shell scripts)
— pass restrictive mode to open ()

Concurrency vs Security 28/39 October 30, 2017

File System: Closing the Window

file names are sensitive to symlink attacks

but file descriptors are not

fchown, fstat, fchmod and so on

open first, check using the file descriptor

if the file is deleted, the fd still points to original

Concurrency vs Security 29/39

October 30, 2017

File System: Temporary Files

e race between picking a free name and creating a file
— alwaysuse O CREAT | 0 EXCL for creation
— never use mktemp, use mkstemp instead
e also applies to creating directories
— never create with mkdir -p
— either mkdtemp or mkdir with error checking
e should be created in a safe location
— either owned by the same user as the process
— or with the sticky permission bit set

Concurrency vs Security 30/39 October 30, 2017

Symlink Attacks: Not Just Races

e GDMdid chmod("/tmp/.X11-unix", 1777)
e the attacker can symlink anything to /tmp/.X11-unix
e they get write access to that file

e instant root privileges
e (CVE-2013-4169

Concurrency vs Security 31/39 October 30, 2017

Part 4: Valgrind

Concurrency vs Security 32/39 October 30, 2017

Why Valgrind: Memory Safety

e we have seen many memory bugs so far
— buffer overflows
— use-after-free
— double free

e (C(and C++) are memory unsafe

Concurrency vs Security 33/39 October 30, 2017

Buffer Overflow

e out-of-bounds write to a buffer
e does not matter if heap or stack
e both are usually (and fatally) exploitable

Examples

e gets .. never use this function
e scanf("%s", buffer) likewise
e sprintf, strcpy, etc. are often used wrong

Concurrency vs Security 34/39

October 30, 2017

Use After Free

e allocate some memory

e call free later, but retain the pointer

e read or (worse) write through the pointer
e usually exploitable

*mem = malloc(1024);
if (error)
free(mem);
strncpy(mem, 1024, some input);

Concurrency vs Security 35/39

October 30, 2017

Double Free

e call free on memory that was already freed
e usually causes heap corruption
e may very well be exploitable

*mem = malloc(1024);
if (error)
free(mem);

free(mem)

Concurrency vs Security 36/39 October 30, 2017

Finding Memory Bugs

memory bugs are notoriously hard to debug
valgrind (specifically its memcheck tool)

only finds bugs that were actually triggered by a test
clean report does not mean your program is secure
works by instrumenting/interpreting binary code

Concurrency vs Security 37/39 October 30, 2017

Helgrind

e races are even harder to find & fix than memory bugs
e use valgrind to detect concurrency issues

e dataraces, locking problems and so on

e you will learn more in the seminar

Concurrency vs Security 38/39 October 30, 2017

Some Other Tools

e static: LockLint (Sun)

— fast but false positives
e runtime

— Visual Threads (HP)

— Thread Checker (Intel)

— DRDT (Data Race Detection Tool; Sun)
e verification: DIVINE

— slow but exact

Concurrency vs Security 39/39 October 30, 2017

