
Concurrency vs Security

Petr Ročkai

Concurrency vs Security 1/39 October 30, 2017

Overview

• Part 1: Concurrent Programs

• Part 2: Race Conditions

• Part 3: Security Implications

• Part 4: Valgrind

Concurrency vs Security 2/39 October 30, 2017

Part 1: Concurrent Programs

Concurrency vs Security 3/39 October 30, 2017

Why Concurrency?

• higher throughput on multicore computers

• serving multiple clients at once

• multiple tasks that are largely independent

How?

• multiprocessing vs multithreading

• different resource vs isolation trade-offs

Concurrency vs Security 4/39 October 30, 2017

What is a Process?

• an isolated address space

• executing a single program

• owns OS-level resources

− (virtual) memory

− access to the CPU

− open ϐile descriptors

− including network connections

• created by fork() on UNIX

Concurrency vs Security 5/39 October 30, 2017

Multiprocessing

• example: httpd

• each client connection gets a new process

• expensive: slow fork, needs more memory

• safe: no interference from other processes

• less safe but faster: process pools

Concurrency vs Security 6/39 October 30, 2017

What is a Thread?

• a sequence of instructions

• each CPU core can run 1 thread at a time

− more with SMT-capable cores (2–8)

− one process can contain many threads

• instructions within a thread run in a sequence

• no guarantees on operation ordering between threads

• also applies to threads from different processes

Concurrency vs Security 7/39 October 30, 2017

Multithreading

• think about httpd again

• each client connection gets a single thread

• threads are lightweight

• less context switching overhead

• further optimisation: thread pools

Concurrency vs Security 8/39 October 30, 2017

Multithreading in HPC

• HPC = high-performance computing

• threads can share data much more easily

• easier to write fast algorithms

• usually not security-relevant

Concurrency vs Security 9/39 October 30, 2017

The OS Kernel

• also runs concurrently with itself

• many processes can be doing system calls at once

• possibly preemptible

• “big kernel lock”: slows everything down

• preemptible kernels: fast but dangerous

Concurrency vs Security 10/39 October 30, 2017

Processes and Communication

• IPC = inter-process communication

• message passing: (relatively) safe but slow

• stdio, sockets or networks: even slower

• shared memory: fast but dangerous

Concurrency vs Security 11/39 October 30, 2017

Example: C / POSIX

void *thread(void *state)

{

puts("thread running");

}

int main()

{

pthread_t tid;

pthread_create(&tid, NULL, thread, &x);

puts("main running");

pthread_join(tid, NULL);

}

Concurrency vs Security 12/39 October 30, 2017

Example: C++

int main()

{

auto f = [] { puts("thread running"); };

std::thread t(f);

puts("main running");

t.join();

}

Concurrency vs Security 13/39 October 30, 2017

Part 2: Race Conditions

Concurrency vs Security 14/39 October 30, 2017

Shared Resources

• memory can be shared by multiple threads

• or even processes, through IPC mechanisms

• when is it safe to access/use a shared resource?

Concurrency vs Security 15/39 October 30, 2017

Race Condition: Example

• consider a shared counter, i

• and the following two threads

int i = 0;

void thread1() { i = i + 1; }

void thread2() { i = i - 1; }

What is the value of i after both ϐinish?

Concurrency vs Security 16/39 October 30, 2017

Race Condition: Deϐinition

• (anomalous) behaviour that depends on timing

• typically among multiple threads or processes

• an unexpected sequence of events happens

• recall that ordering is not guaranteed

Concurrency vs Security 17/39 October 30, 2017

Mutual Exclusion

• only one process (thread) can access a resource at once

• ensured by a mutual exclusion device (a.k.a mutex)

• a mutex has 2 operations: lock and unlock

• those must be correctly paired up

• lock may need to wait until another thread unlocks

Concurrency vs Security 18/39 October 30, 2017

Mutual Exclusion: Deadlocks

• happens if 2 or more threads cannot proceed

• each is waiting for a mutex locked by the other thread

• many other scenarios (not speciϐic to mutexes)

Example

• 2 mutexes: A, B

• ϐirst thread locks A ϐirst, then B

• second thread locks B ϐirst, then A

• race condition on mutexes

Concurrency vs Security 19/39 October 30, 2017

Semaphore

• somewhat more general than a mutex

• allows multiple interchangeable instances of a resource

• and corresponding number of threads in the critical section

• basically an atomic counter

Concurrency vs Security 20/39 October 30, 2017

Shared Resources Revisited

• the ϐile system is also a shared resource

• shared even between processes

• race conditions with other programs

− possibly under the control of the attacker

• same with network resources &c.

Concurrency vs Security 21/39 October 30, 2017

Part 3: Security Implications

Concurrency vs Security 22/39 October 30, 2017

Two Types of Races

• within a single application (program)

− bugs, not necessarily security-relevant

− unexpected behaviour due to sequencing

− eg. deadlocks/livelocks, memory corruption, etc.

− races on ϐile descriptors (write vs close)

• on resources shared with third parties

− ϐile system, network, etc.

− almost always a security problem

Concurrency vs Security 23/39 October 30, 2017

Single-Program Races

• not always, but sometimes security problems

• CVE-2017-2636: race condition in the Linux kernel

• unprivileged user can cause a timing-related double free

• and possibly gain root privileges

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Concurrency vs Security 24/39 October 30, 2017

The Systrace Race

• systrace was a BSD syscall restriction tool (sandbox)

• works by interposing every system call

• inspected at runtime by a user-space program

• syscall performed by the kernel if OK’d by the helper

• typical check–perform (TOC-TOU) race condition

Concurrency vs Security 25/39 October 30, 2017

File System: Permission Checks

• imagine a program is executing as root

• it can send ϐiles to users

• subject to standard permission checks

• what happens if it does stat() to check access

• then open the ϐile and send content?

Concurrency vs Security 26/39 October 30, 2017

Exploiting FS Races: Symlink Attacks

• the attacker creates, say, /tmp/innocent

• it requests access to that ϐile via the above app

• replaces the ϐile after the app does its stat()

• by a symlink pointing to, say, /etc/shadow

Concurrency vs Security 27/39 October 30, 2017

File System: Changing Ownership

• a program creates a ϐile or a directory

• then calls chown to change the owner

• also vulnerable to symlink attacks

• CVE-2012-6095 (ProFTPd)

Concurrency vs Security 28/39 October 30, 2017

File System: Changing Permissions

• a ϐile is written (with sensitive content)

• it’s immediately chmod-ed

• but the attacker can read it in a narrow time window

• CVE-2013-2162

• solution:

− set umask (for shell scripts)

− pass restrictive mode to open()

Concurrency vs Security 29/39 October 30, 2017

File System: Closing the Window

• ϐile names are sensitive to symlink attacks

• but ϐile descriptors are not

• fchown, fstat, fchmod and so on

• open ϐirst, check using the ϐile descriptor

• if the ϐile is deleted, the fd still points to original

Concurrency vs Security 30/39 October 30, 2017

File System: Temporary Files

• race between picking a free name and creating a ϐile

− always use O_CREAT | O_EXCL for creation

− never use mktemp, use mkstemp instead

• also applies to creating directories

− never create with mkdir -p

− either mkdtemp or mkdirwith error checking

• should be created in a safe location

− either owned by the same user as the process

− or with the sticky permission bit set

Concurrency vs Security 31/39 October 30, 2017

Symlink Attacks: Not Just Races

• GDM did chmod("/tmp/.X11-unix", 1777)

• the attacker can symlink anything to /tmp/.X11-unix

• they get write access to that ϐile

• instant root privileges

• CVE-2013-4169

Concurrency vs Security 32/39 October 30, 2017

Part 4: Valgrind

Concurrency vs Security 33/39 October 30, 2017

Why Valgrind: Memory Safety

• we have seen many memory bugs so far

− buffer overϐlows

− use-after-free

− double free

• C (and C++) are memory unsafe

Concurrency vs Security 34/39 October 30, 2017

Buffer Overϐlow

• out-of-bounds write to a buffer

• does not matter if heap or stack

• both are usually (and fatally) exploitable

Examples

• gets… never use this function

• scanf("%s", buffer) likewise

• sprintf, strcpy, etc. are often used wrong

Concurrency vs Security 35/39 October 30, 2017

Use After Free

• allocate some memory

• call free later, but retain the pointer

• read or (worse) write through the pointer

• usually exploitable

char *mem = malloc(1024);

if (error)

free(mem);

strncpy(mem, 1024, some_input);

Concurrency vs Security 36/39 October 30, 2017

Double Free

• call free on memory that was already freed

• usually causes heap corruption

• may very well be exploitable

char *mem = malloc(1024);

if (error)

free(mem);

// ...

free(mem)

Concurrency vs Security 37/39 October 30, 2017

Finding Memory Bugs

• memory bugs are notoriously hard to debug

• valgrind (speciϐically its memcheck tool)

• only ϐinds bugs that were actually triggered by a test

• clean report does not mean your program is secure

• works by instrumenting/interpreting binary code

Concurrency vs Security 38/39 October 30, 2017

Helgrind

• races are even harder to ϐind & ϐix than memory bugs

• use valgrind to detect concurrency issues

• data races, locking problems and so on

• you will learn more in the seminar

Concurrency vs Security 39/39 October 30, 2017

Some Other Tools

• static: LockLint (Sun)

− fast but false positives

• runtime

− Visual Threads (HP)

− Thread Checker (Intel)

− DRDT (Data Race Detection Tool; Sun)

• veriϐication: DIVINE

− slow but exact

