
Implementing CBC

Petr Ročkai



ImplemenƟng CBC 1/12 October 19, 2017

Overview

• we will use the AES block encryption function

• to implement the CBC mode

• this is just an exercise

• to understand how CBC works

• you should not do this in real projects



ImplemenƟng CBC 2/12 October 19, 2017

Cipher Modes

• a block cipher can only encrypt one block at a time

• typically same size as the key

• plaintext lengthmust be divisible by block length→ padding

ECB

• split the message into block-sized chunks

• encrypt each block separately

• insecure



ImplemenƟng CBC 3/12 October 19, 2017

Can we do better? CBC

• XOR previous ciphertext into current plaintext



ImplemenƟng CBC 4/12 October 19, 2017

CBC Properties

• error-resistant (self-synchronising)

• parallel decryption is possible

• can’t encrypt in parallel

How to Pad

• let 𝑛 be the number of missing bytes

• clearly 0 < 𝑛 < 255, so it ϐits in a byte

• PKCS7: each padding byte just repeats 𝑛

• example: ???? ???? ??? → ???? ???? ???5 5555



ImplemenƟng CBC 5/12 October 19, 2017

Padding Oracles

• possible if a server indicates a padding error

• an apparently minor info leak compromises the cipher

• CBC with PKCS7 padding is vulnerable



ImplemenƟng CBC 6/12 October 19, 2017

CBC Decryption



ImplemenƟng CBC 7/12 October 19, 2017

A Padding Oracle

• assume 128b AES: 1 block = 16 bytes

• consider a ciphertext (IV, C₁, C₂) that decrypts to (P₁, P₂)

• consider (hex) P₂ = ???? ???? ???? ??01 → OK

• what about P₂ = ???? ???? ???? ??12 → ERROR

Recovering the Last Byte

• set C₁’[15] = C₁[15]⊕ X⊕ 0x01

• send (IV, C₁’, C₂) to the oracle

• if we get OK, it’s likely that P₂[15] = X



ImplemenƟng CBC 8/12 October 19, 2017

Correctness

• (I₁, I₂) are the intermediate results from AES block decrypt

• C₁[15]⊕ X⊕ 0x01⊕ I₂[15] = 0x01 /⊕ I₂[15]

• C₁[15]⊕ X⊕ 0x01 = 0x01⊕ I₂[15] /⊕ 0x01

• C₁[15]⊕ X = I₂[15] /⊕ X⊕ I₂[15]

• C₁[15]⊕ I₂[15] = X



ImplemenƟng CBC 9/12 October 19, 2017

Getting More Bytes

• if we already know X = P₂[15]

• we can set C₁’[15] to C₁[15]⊕ X⊕ 0x02

• and C₁’[14] to C₁[14]⊕ Y⊕ 0x02

• and guess again until we hit the right Y



ImplemenƟng CBC 10/12 October 19, 2017

This Lab

• download and compile the skeleton from study materials

• implement my_encrypt_cbc only using aes_crypt_ecb

• create a new ϐile, eg. cbc.cwith a new main() function

• start working on your assignment (next slide)



ImplemenƟng CBC 11/12 October 19, 2017

Assignment 3

• implement the padding oracle attack

− recovery of the last byte (1pt)

− recovery of an entire block (1pt)

• is a speciϐic error code/message required?

− what other info could the attacker use? explain (1pt)

• what could you do to defend against the attack? (1pt)

− take previous into account

− describe at least 2 modes of defence

• implement the better of those 2 defences (1pt)



ImplemenƟng CBC 12/12 October 19, 2017

Assignment 3 (cont’d)

• pick any block you like for your attack

• the function performServerDecrypt is your oracle

• do not modify this function

• make a copy for implementing your defence

• mention your sources

• the deadline is Thu 26th at midnight


