

PA198 **Augmented Reality Interfaces**

Lecture 12 Collaborative AR Applications & Future

> Fotis Liarokapis liarokap@fi.muni.cz

11th December 2017

Collaborative AR **Applications**

Collaboration

- · Collaboration is working with others to do a task and to achieve shared goals
 - A recursive process where two or more people or organizations work together to realize shared goals

- Collaboration
 - Business, Entertainment, etc
- Computer Supported Collaborative Work (CSCW)
- Groupware

Collaborative Learning

- · Collaborative activities are most often based on four principles:
 - The learner or student is the primary focus of instruction
 - Interaction and 'doing' are of primary importance
 - Working in groups is an important mode of learning
 - Structured approaches to developing solutions to real-world problems should be incorporated into learning

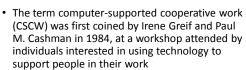
Persistent Information

- · Email
- · News group
- · Papers
- · Mail
- Electronic Notebook

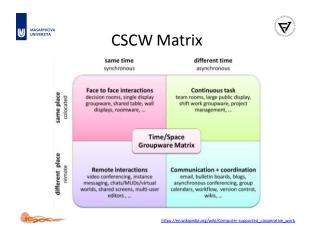
Legal and Records requirem enta

- · Telephone
- · Video Conference · Chat/White board

Real Time Information Exchange


- Shared authoring &
- applications
- Shared VR space
- · Instrument control

Notebook is a chronological record of ideas, data and events



w computer-Supported Cooperative ♥ Work (CSCW)

 CSCW is a generic term, which combines the understanding of the way people work in groups with the enabling technologies of computer networking, and associated hardware, software, services and techniques

https://en.wikipedia.org/wiki/Computer-supported cooperative work

Today's Technology

- Lack of spatial cues
- Limited participants
- 2D collaboration
- · Collaborative Virtual Environments
 - Separation from real world
 - Reduced conversational cues

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

 ∇

Beyond Video Conferencing

- · 2D Interface onto 3D
 - VRML, Web3D
- Projection Screen
 - CAVE, WorkBench
- Volumetric Display
 - Scanning laser
- Virtual Reality
 - Natural spatial cues

Beyond Virtual Reality

Future Collaboration?

- · Lessons from CSCW
 - Seamless
 - Enhance Reality
- · Immersive Virtual Reality
 - Separates from real world
 - Reduces conversational cues

· Remote Conferencing

· Face to face Conferencing

AR & Collaboration

Construct3D [Kaufmann 2000]

- · Claim:
 - AR techniques can be used to provide spatial cues that significantly enhance face-to-face and remote collaboration on three-dimensional tasks

· Collaborative geometry education tool

- · Different learning modes
 - Teacher, student, exam

- Personal interaction panel

- Tangible interaction

Construct3D Video

Collaborative AR

- · Seamless Interaction
 - Natural Communication
 - Attributes:
 - Virtuality
 - Augmentation
 - Co-operation
 - Independence
 - Individuality


Seamless CSCW

- Seam
 - Spatial, temporal, functional discontinuity
- Types of Seams
 - Functional
 - · Between different functional workspaces
 - Cognitive
 - Between different work practices

Billinghurst M. Lecture 6: Collaborative AR Applications. HIT Lab NZ. University of Canterbury

Cognitive Seams

Effect of Seams

- Loss of Gaze Information
- Degradation of Non-Verbal Cues
- · Cognitive Seams:
 - Learning Curve Effects
 - User Frustration

Open Research Questions



Collaborative AR Interfaces

- Does seamlessness enhance performance?
- · What AR cues can enhance collaboration?
- How does AR collaboration differ ?
- What technology is required?

- WebSpace, Shared Space, Table Top Demo, Interface
- · Comparison, AR Interface Comparison
- Remote Collaboration
 - SharedView, RTAS, Wearable Info Space, WearCom, AR Conferencing, BlockParty
- Transitional Interfaces
 - MagicBook
- Hybrid Interfaces
 - AR PRISM, GI2VIS

Communication Cues

· A wide variety of communication cues used

Communication Cues.

Face to Face

Collaboration

Differences in Collaboration

- In computer supported collaboration it is often hard for users to exchange non-verbal communication cues, even when they are colocated

- · Face-to-face collaboration
 - People surround a table
 - It is easy to see each other

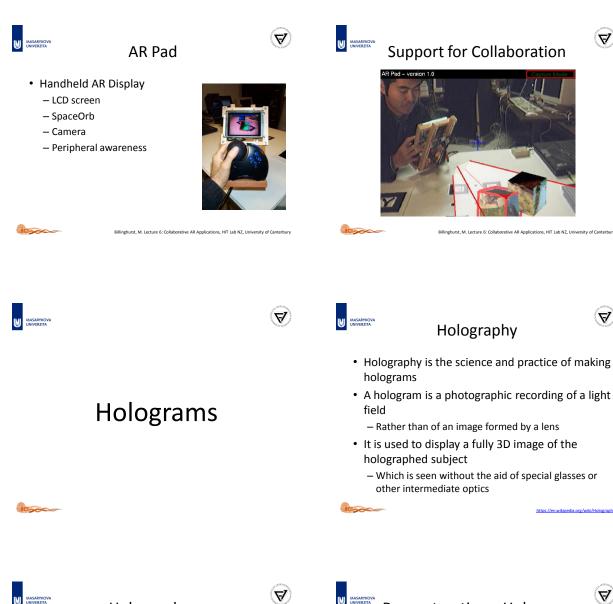
- · Computer supported collaboration
 - People sit side by side
 - It is hard to see each other

Shared Space - Table Top Demo

- Goal
 - Create compelling collaborative AR interface usable by novices
- · Exhibit content
 - Matching card game
 - Face to face collaboration
 - Physical interaction

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Results from Shared Space



- 2,500 3,000 users
- Observations
 - No problems with the interface
 - · Only needed basic instructions
 - Physical objects easy to manipulate
 - Spontaneous collaboration
- User study (157 participants)
 - Users felt they could easily play with other people and interact with objects
- Improvements
 - Reduce lag, improve image quality, better HMD

 \triangle

 \triangle

 \triangle

Recording a Hologram

- · To make a hologram, the following are required:
 - A suitable object or set of objects
 - A suitable laser beam
 - Part of the laser beam to be directed so that it illuminates the object beam and another part so that it illuminates the recording medium directly (the reference beam)
 - Enabling the reference beam and the light which is scattered from the object onto the recording medium to form an interference pattern
 - A recording medium
 - Converts this interference pattern into an optical element which modifies either the amplitude or the phase of an incident light beam according to the intensity of the interference pattern
 - An environment
 - Provides sufficient mechanical and thermal stability that the interference pattern is stable during the time in which the interference pattern is recorded

CNN Hologram

- · Elections in 2008, USA
- · Holographic technology used
 - First time in TV

CNN Hologram Video

` [

Basic AR Conferencing

 Moves conferencing from the desktop to the workspace

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

https://www.youtube.com/watch?v=thOxW19vsTg

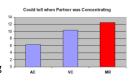
Features

Pilot Study

- Hardware
 - SGI 02
 - Virtual i-O HMD
 - Head mounted camera
- Software
 - Live video
 - Shared whiteboard
 - Vision based registration/tracking

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

- · How does AR conferencing differ?
- Task
- Discussing images
- 12 pairs of subjects
- Conditions
 - Audio only (AC)
 - Video conferencing (VC)
 - Mixed reality conferencing (MR)


Results

- Paid more attention to pictures
- Remote video provided peripheral cues
- In AR condition
 - Difficult to see everything
 - Remote user distracting
 - Communication asymmetries

Features

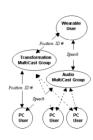
- Mobile video conferencing
- Full size images
- Spatial audio/visual cues
- Interaction with real world
- Dozens of users
- Body-stabilized data

HCI

llinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

Initial Prototype



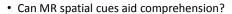
- · Internet Telephony
- Spatial Audio/Visuals
- · See-through HMD
- · Head Tracking
- Wireless Internet
- · Wearable Computer
- · Static Images

Multicast Groups

- Position Broadcasting
 - 10 kb/s per person
- Audio Broadcasting
 - 172 kb/s per person
- · Local sound spatialization
 - DirectSound3D
- · Graphics Interface
 - DirectX/Direct3D

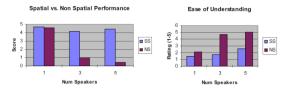
HCISSO

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbu



Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbu

Pilot User Study


- Task
 - Recognize words in spoken phrases
- Conditions
 - Number of speakers
 - 1,3,5 simultaneous speakers
 - Spatial/Non Spatial Audio
 - Visual/Non visual cues

Results

HCISSON

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

HCI

 \triangle

 \triangle

 \triangle

MagicBook Concept

- A collaborative AR interface supporting transitions from reality to virtual reality

- Physical Components
 - Real book
- Display Elements
 - AR and VR content
- Interaction Metaphor
 - Book pages hold virtual scenes

Multiscale

Collaboration

· Milgram defined the term 'Augmented Virtuality' to identify systems which are mostly synthetic with some real world imagery added such as texture mapping video onto virtual objects

MagicBook Transitions

- · Interfaces of the future will need to support transitions along the Reality-Virtuality continuum
- · Augmented Reality is preferred for:
 - Co-located collaboration
- · Immersive Virtual Reality is preferred for:
 - Experiencing world immersively (egocentric)
 - Sharing views
 - Remote collaboration

MagicBook Features

- · Seamless transition between Reality and Virtuality
 - Reliance on real decreases as virtual increases
- Supports egocentric and exocentric views
 - User can pick appropriate view
- · Computer becomes invisible
 - Consistent interface metaphors
 - Virtual content seems real
- Supports collaboration

Billinghurst, M. Lecture 6: Collaborative AR Applications, HIT Lab NZ, University of Canterbury

MagicBook Collaboration

- · Collaboration on multiple levels:
 - Physical Object
 - AR Object
 - Immersive Virtual Space
- Egocentric + exocentric collaboration
 - Multiple multi-scale users
- · Independent Views
 - Privacy, role division, scalability


MagicBook Video

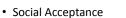
Conclusions

- AR preferred over immersive VR
- AR facilitates seamless/natural communication
- · Remote Collaboration
 - AR spatial cues can enhance communication
 - AR conferencing improves video conferencing
 - Many possible confounding factors
- Future
 - Expect a lot of new AR technologies and apps

Future of AR

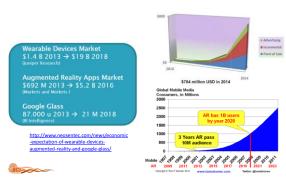
- Many years of development
 - A lot of achievements
- · Moving from desktop to mobile
 - New interfaces are required
 - Research is changing

AR Nowadays

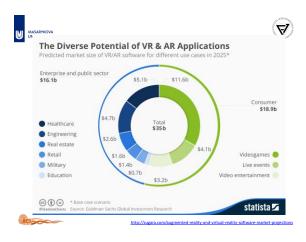


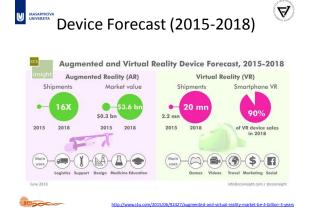
- 30th November 2015 AR went to space!
- New hardware improvements expected
- · Many companies
 - > \$600 Million USD marketAnd growing
 - Thousands of applications (mainly mobile)
- A lot of tools exist but no complete solution

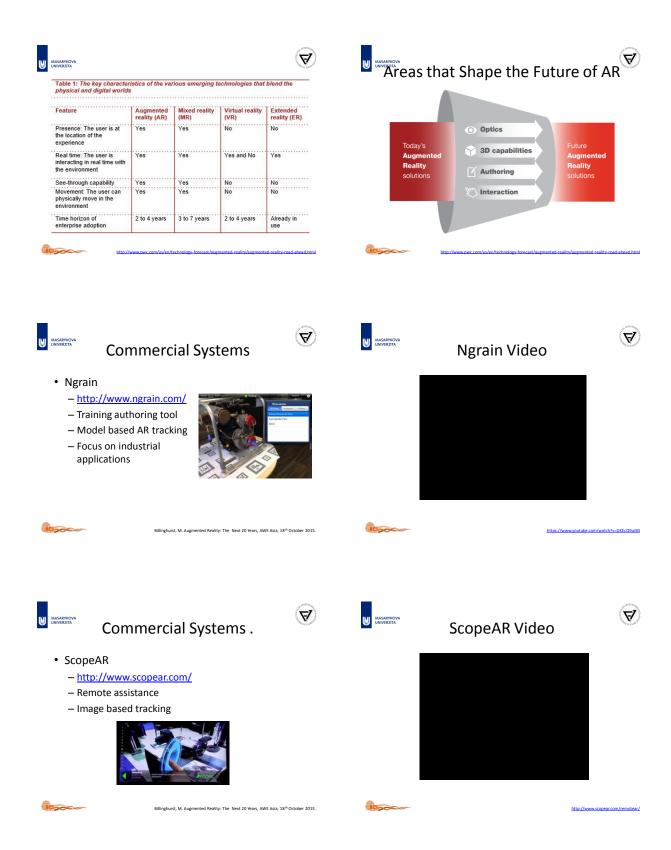
- Overcome social problems with AR
- Cloud Services
 - Cloud based storage/processing
- AR Authoring Tools
 - Easy content creation for non-experts
- Collaborative Experiences
 - AR teleconferencing


Investments

A


Facts & Expectations


- Big investments by Google and Apple
 - 29 M Euros Apple (Metaio)
 - 542 M dollars (Magic Leap)
 - · Facebook invested in VR

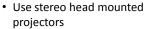


Key Enabling Technologies



- Augmentation
 - Display Technology
- · Real-time interaction
 - Interaction Technologies
- 3D Registration
 - Tracking Technologies

MASARYKOVA UNIVERZITA



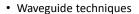
MASARYKOVA UNIVERZITA

Displays Projections

- · Early years
 - Bulky HMDs
- Nowadays
 - Handheld, lightweight HMDs
- Near Future
 - Projected AR
 - Wide FOV see through
 - Retinal displays
- Far Future
 - Contact lens

- Rollable retro-reflective sheet
- Wide FOV, shared interaction
 - i.e. CastAR (http://castar.com)
 - \$400 USD, available Q4 2015

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 20



CastAR Video

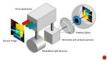
Wide FOV See-Through (3+ years)

- Wider FOV
- Thin see through
- Socially acceptable
- · Pinlight Displays
 - LCD panel + point light sources
 - 110 degree FOV
 - UNC/Nvidia

Lumus DK40

Maimone, A., Lanman, D., et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources, Prot ACM SIGGRAPH 2014 Emerging Technologies, 20, 2014.

Retinal Displays (5+ years)



Contact Lens (15 + years)

- · Photons scanned into eye
 - Infinite depth of field
 - Bright outdoor performance
 - Overcome visual defects
 - True 3D stereo with depth modulation
- Microvision (1993-)
 - Head mounted monochrome
- MagicLeap (2013-)
 - Projecting light field into eye

- Wide FOV

· Contact Lens only

- Unobtrusive

- Socially acceptable
- Innovega
 - http://innovega-inc.com/

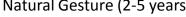
- Significant technical challenges

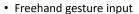
• Power, data, resolution

Billinghurst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

Interaction Projections

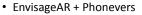
- Early years
 - Limited interaction
 - Viewpoint manipulation
- Nowadays
 - Screen based, simple gesture
 - Tangible interaction
- Future
 - Natural gesture, Multimodal
 - Intelligent Interfaces
 - Physiological/Sensor based





Natural Gesture (2-5 years)

Interaction



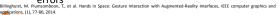
- Depth sensors for gesture capture
- Move beyond simple pointing
- Rich two handed gestures
 - i.e. Microsoft Research Hand Tracker - 3D hand tracking, 30 fps, single sensor
- · Commercial Systems
 - Meta, Hololens, Occulus, Intel, etc

· RGB-D hand tracking on Android

Smart Glass Hand Interaction

· Natural gesture input for glasses

Sharp, T., Keskin, C., et al. Accurate, Robust, and Flexible Real-time Hand Tracking, Proc CHI, Vol. 8, 2015

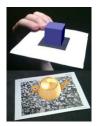

irst, M. Augmented Reality: The Next 20 Years, AWE Asia, 18th October 2015.

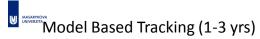
Multimodal Input (5+ years)

- Combine gesture and speech input
 - Gesture good for qualitative input
 - Speech good for quantitative input
 - Support combined commands
 - "Put that there" + pointing
- HIT Lab NZ multimodal input
 - 3D hand tracking, speech
 - Multimodal fusion module
 - Complete tasks faster with MMI, less

Tracking

- Recognize user behaviour
- Provide adaptive feedback
- Support scaffolded learning
- Move beyond check-lists of actions
- Eg AR + Intelligent Tutoring
 - Constraint based ITS + AR
 - PC Assembly
 - 30% faster, 25% better retention

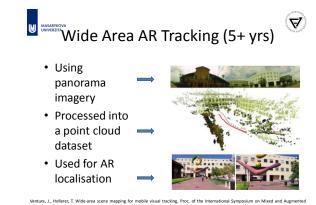



Tracking Projections

- Early years
 - Location based, marker based,
 - Magnetic/mechanical
- Nowadays
 - Image based, hybrid tracking
- Future
 - Ubiquitous
 - Model based
 - Environmental


- · Track from known 3D model
 - Use depth + colour information
 - Match input to model template
 - Use CAD model of targets
- · Recent innovations
 - Learn models online
 - Tracking from cluttered scene
 - Track from deformable objects




Environmental Tracking (3+ yrs)

- · Environment capture
 - Use depth sensors to capture scene & track from model
- InifinitAM
 - Real time scene capture on mobiles (dense or sparse)
 - Dynamic memory swapping allows large environment
 - Cross platform, open source library available

Conclusions

 \triangle

- 30th November 2015 AR went to space!
- · New hardware improvements expected
- Many companies
 - > \$600 Million USD market And growing
 - Thousands of applications (mainly mobile)
- A lot of tools exist but no complete solution

