

DroidAR

- AR framework for Android
- Features location based and marker based AR
- Open source (dual-license):
 - GPLv3 or commercial

 ∇

MASARYKOVA UNIVERZITA

GeoAR

- Open source (Apache 2.0 License) browser for Android
- Features location based AR and a flexible data source framework

BeyondAR

 \forall

- Open source (Apache 2.0 License)
- AR framework based on geo-localisation for Android

HCIDOCO

http://bey

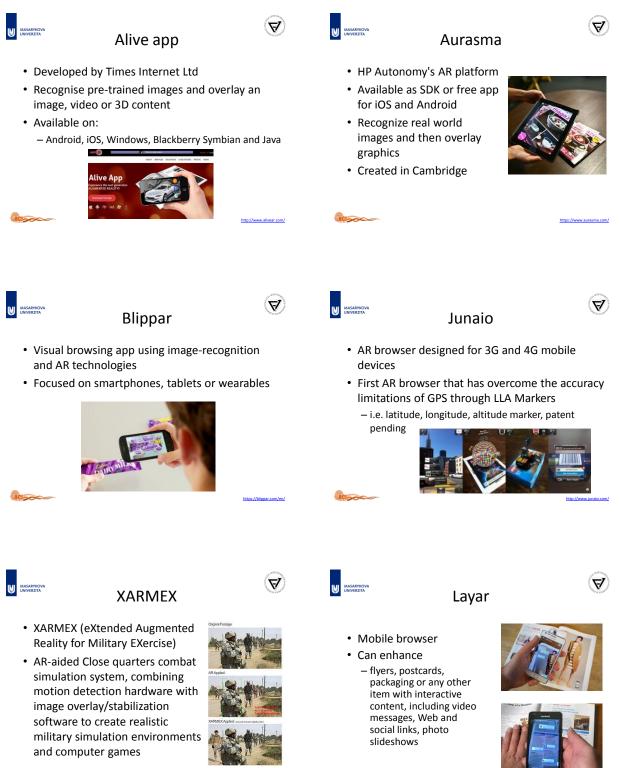
 ∇

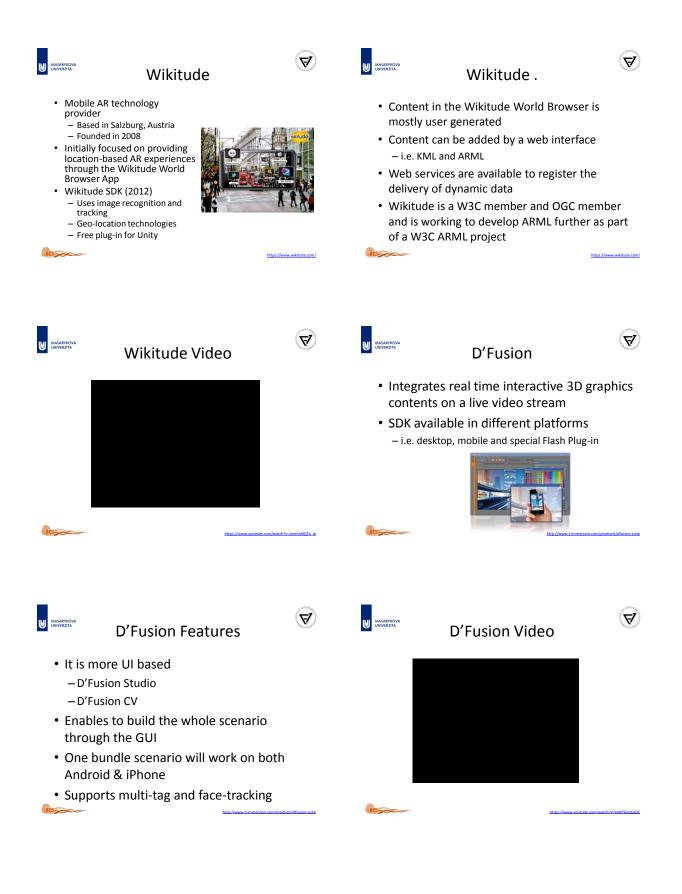
Kudan AR Engine

- AR SDK for iOS and Android devices
- Powerful Rendering

 Multi-million polygon 3D models
- Advanced Tracking
 - Markerless






Proprietary

- The Vuforia SDK supports different types of targets
 - both 2D and 3D, including multi-target configurations, cylinder targets to track images on a cylindrical surface, marker less image targets, frame markers and cloud recognition targets to track 1 million targets simultaneously
- SDK supports both iOS and Android

End-to-End Branded App Solutions

Based on License Type

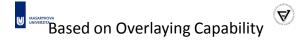
AR SD Type	К	Vuforia	Metaio	Wikitude	ARToolKit	D' Fusion	ARmedia
Licen	Open source	×	×	×	~	×	×
se	Free	~	~	✓	✓	✓	✓
	Commer cial	~	~	✓	~	✓	✓

min, D., Govillar, S. Comparative Study of Augmented Reality SDK's, Int'l Journal on Computational Sciences & Applications, 5(1): 11-26, February 2015.

Based on Platform Supp	orted
------------------------	-------

 $\langle \nabla \rangle$

 (∇)


AR S Type		Vuforia	Metaio	Wikitude	ARToolKit	D'Fusion	ARmedia
Lice	iOS	×	~	×	~	~	~
nse	Android	~	~	~	~	~	~
	Window	~	~	~	~	~	~

Amin, D., Govikar, S. Comparative Study of Augmented Reality SDK's, Int'l Journal on Computational Sciences & Applications, 5(1): 11-26, February 2015.

AR SDK Type	Vuforia	Metaio	Wikitude	ARToolKit	D'Fusion	ARmedia
	Online target manger.	No online tool.	Online target manager tool.	Online tool to create marker.	D'Fusion studio.	Provide plug-in for Google SketchUp.
Marker generation	Support generation of frame, image markers.	Provides readymade 512 different ID markers	Provide creation of target collection of multiple targets.	Provide set of predefined square markers in a PDF file.	Provide dataset of 500 images to use as marker.	Provides set of predefined markers.

Amin, D., Govilkar, S. Comparative Study of Augmented Reality SDK's, Int'l Journal on Computational Sciences & Applications, 5(1): 11-26, February 2015

AR SDK Type		Vuforia	Metaio	Wikitude	ARToolKit	D'Fusion	ARmedia
	2D content	~	~	~	~	~	~
Overl	3D content	~	~	~	~	~	~
aying cpapb ility	Others	3D animatio n can be overlaid on screen	Billboa rd can be overlai d	Sprite animation s, 3D transform ations and HTML contents	Support high level graphic content and animations.	3D animation can be overlaid on screen	Interactiv e 3D animation through SketchUp

Amin, D., Govillar, S. Comparative Study of Augmented Reality SDK's, Int'l Journal on Computational Sciences & Applications, 5(1): 11-26, February 2015.

 $\langle a \rangle$

Vuforia	Enable to maintain tracking even when the target is out of view and view them from greater distance.
	Cloud Database allows storing thousands of image targets.
Metaio	Powerful 3D rendering engine with capability load 3D model of .obj format.
	No limit on number of trackable object depends on device memory.
Wikitude	AR content can be programmed using basic HTML5, JavaScript and CSS.
	Easy portability of AR apps from one platform to another.
ARToolKit	Multiple platforms AR app development possible. Only AR SDK which is available as open source, through which many new AR frameworks developed.
D'Fusion	High quality 3D content can be augmented with support for multiple 3D object formats.
	Provides encrypted media to prevent privacy or substitution risks.
ARmedia	Depth camera calibration provided which creates more immersive experience

 \forall

 \forall

Limitation of Different AR SDK's

Limitation					
Vuforia	Vuforia SDK for Android does not expose any utility function to easily load a 3D model from any standard format.				
	Device database can only support 100 image targets.				
Metaio Difficult to render complex 3D objects also limitation is associated					
Metalo	model size.				
	Doesn't track 3D model which limits is use to only 2D tracking.				
Wikitude					
	Target image to track need to be of solid colors to be recognized				
	Less accuracy in tracking markers even when camera and marker are still.				
ARToolKit					
	It itself doesn't support location based augmented reality				
D'Fusion	Video file supported but audio associated with video can't be played				
ARmedia	Doesn't support all type of textures for 3D objects				

Amin, D., Govillar, S. Comparative Study of Augmented Reality SDK's, Int'l Journal on Computational Sciences & Applications, 5(1): 11-26, February 2015.

Apple ARKit

- ARKit combines device motion tracking, camera scene capture, advanced scene processing, and display conveniences to simplify the task of building an AR experience
 - Requires an iOS device with an A9 or later processor

 \mathbf{A}

ARKit Overview

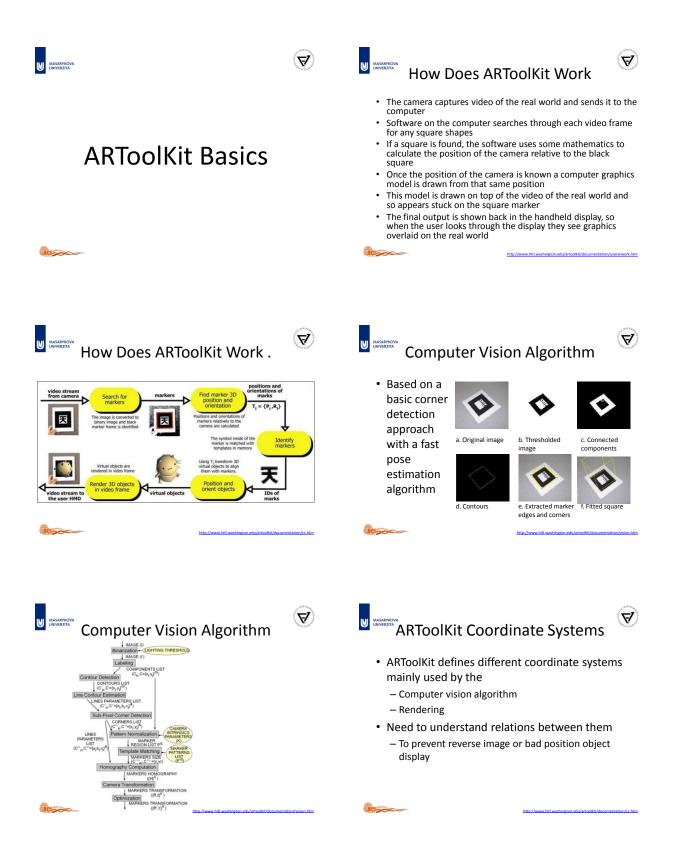
Latest Software

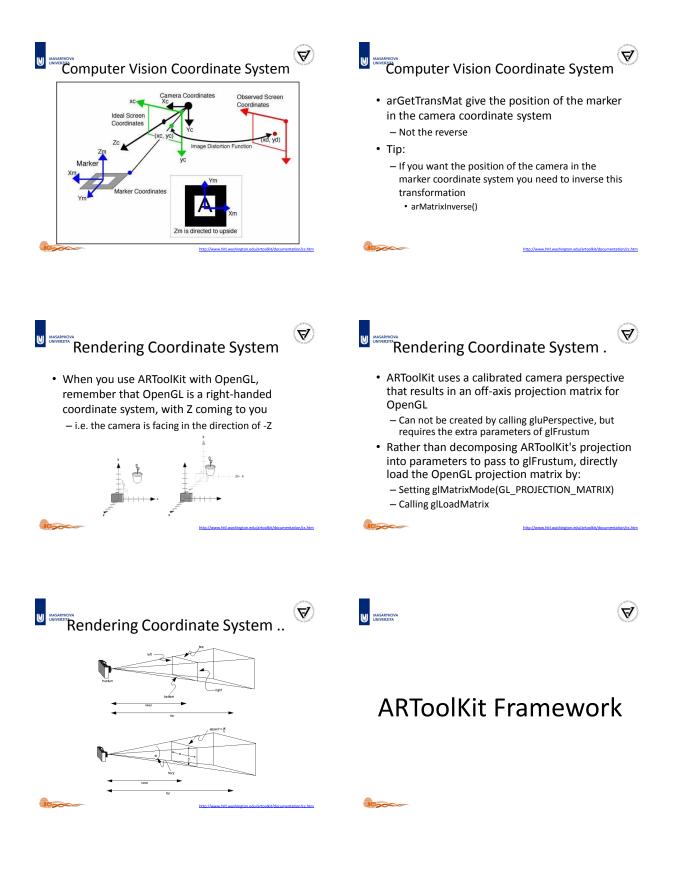
- TrueDepth Camera
- Visual Inertial Odometry
- Scene Understanding and Lighting Estimation
- High Performance Hardware and Rendering Optimizations

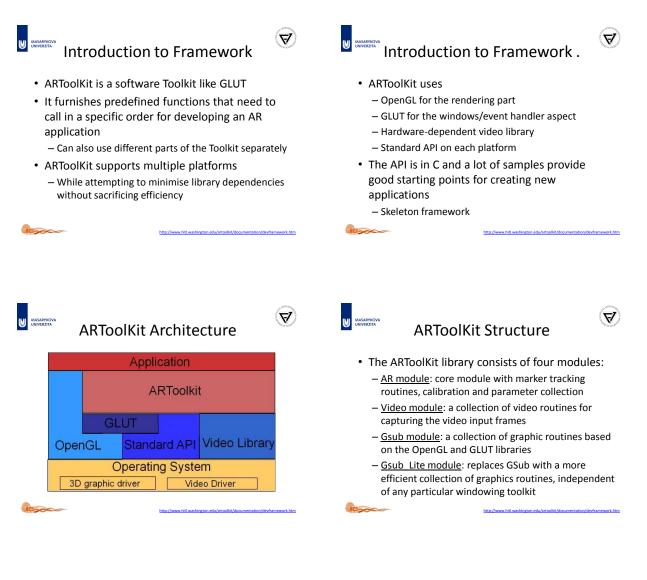
Best Apple ARKit Demos

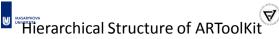
- IKEA Place
- Walking Dead: Our World
- My Very Hungry Caterpillar AR
- Shotpro
- Finding your friends at a festival

Check the link

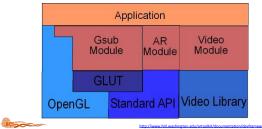

pple-arkit-demos-apps

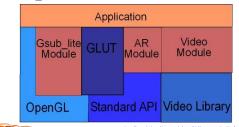

 ∇

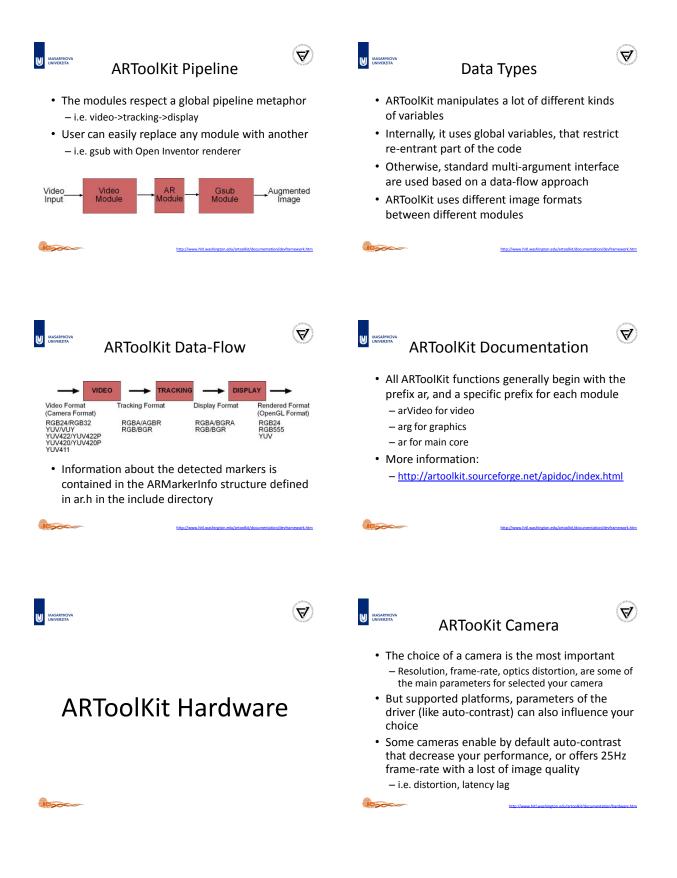



Google ARCore

- Equivalent to Apple's ARKit – It's a built-in AR platform for app makers
- Available now on Google Pixel and Samsung Galaxy 8 phones
 - Expected to run on 100 million phones by this winter
- Google is also working on two experimental AR web browsers
 - One that will use ARCore
 - One that will run on iOS and support ARKit






 Hierarchical structure of ARToolKit using Gsub Module

Hierarchical Structure of ARToolKit .

• Hierarchical structure of ARToolKit using Gsub_Lite Module

ARTooKit Camera

- The most efficient solution keep a video capture card with a PAL or NTSC camera that offers a large choice and a really good quality camera
 - But a PAL camera can be really expensive according its characteristics
- The signal deliver is RGB image (color palette) that reduce hardware or software palette conversion cost

 \forall

ARTooKit Camera

- The traditional choice is USB or Firewire camera
- · Can notice that frame-rate or color palette (RGB, YUV, YUV compressed) depend mainly on the bandwidth of the technology
- · USB Camera used generally compressed format transmission like YUV:4:2:2 YUV:4:1:1
 - i.e. lossy compression
- · Firewire Cameras offers better solution, but camera with full RGB color palette are generally expensive
 - A compressed format in VGA remains a good choice

UNIVERZITA	ARTooKit Came	era Table 1
USB1.1	max 1.5 MByte/s	most low cost solution
IEEE1394a	60 Mbyte/s	good solution with a s camera protocol.

PCI32Bit1.0 (33Mhz)

PCI64Bit2.0 (33Mhz)

PCI32Bit2.1 (66Mhz)

PCI64Bit2.1 (66Mhz)

USB2.0

IEEE1394b

max 1.5 MByte/s	most low cost solution.
60 Mbyte/s	good solution with a standardized camera protocol.
125.89 MByte/s	
251.77 MByte/s	
max 50 MByte/s	badly supported on Linux.
100 Mbyte/s	few cameras support this protocol.
251.77 MByte/s	
503.54 MByte/s	



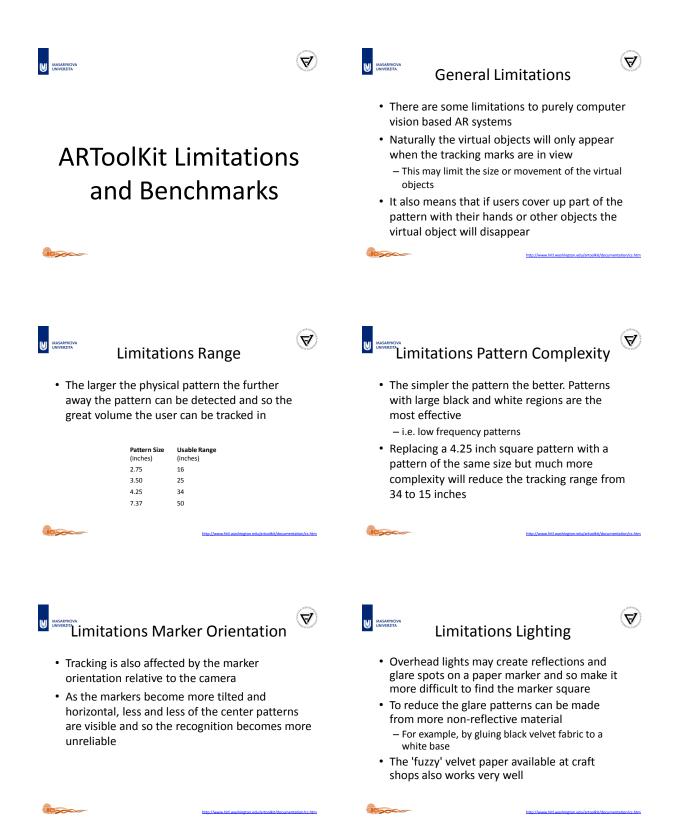
 \mathbf{A}

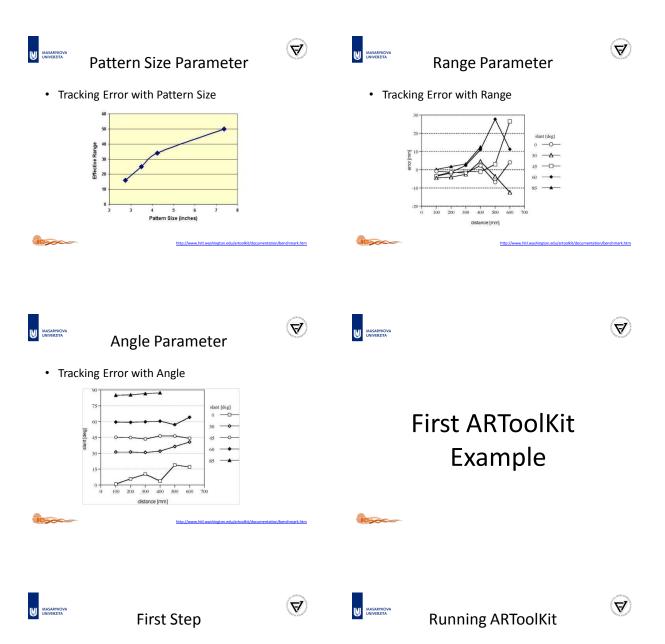
ARTooKit Camera Table 2

SIF RGB 15 fps	27 MBit/s (3.37 MByte/s)
SIF RGB 30 fps	55 MBit/s (6.87 MByte/s)
SIF YUV 4:1:1 15 fps	13 MBit/s (1.62 MByte/s)
SIF YUV 4:1:1 30 fps	27 MBit/s (3.37 MByte/s)
VGA RGB 15 fps	106 MBit/s (13.25 MByte/
VGA RGB 30 fps	221 MBit/s (26.37 MByte/
VGA YUV 4:1:1 15 fps	53 MBit/s (6.63 MByte/s)
VGA YUV 4:1:1 30 fps	106 MBit/s (13.25 MByte/

HMDs and ARTooKit

- ARToolKit uses computer vision techniques for image-based recognition and tracking
- · Since it uses only a single camera, a self-contained head tracking system can be developed if this camera is fixed to an HMD
- In this way AR applications can be developed which use HMDs



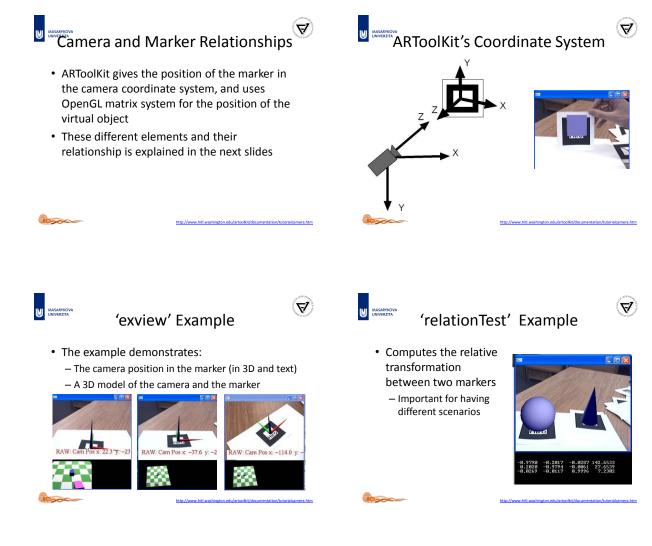

 \forall

Non-HMD and ARTooKit

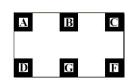
- \forall
- · It is not necessary to have a head mounted display to use the ARToolKit
 - A camera connected to a computer is the only requirement
- Without an HMD ARToolKit applications can be viewed on a computer monitor
 - With an HMD a more immersive experience can be created

- Once ARToolKit has been installed there is a sample program, simpleTest or simple according your ARToolKit version, in the bin directory that can be run to show the capabilities of ARToolKit
- To run the code you need to print out the <u>hiroPatt.pdf</u> paper fiducial marker that is contained in the directory patterns
 - Best performance is achieved if this is glued to a piece of cardboard to keep it flat

HCISOO

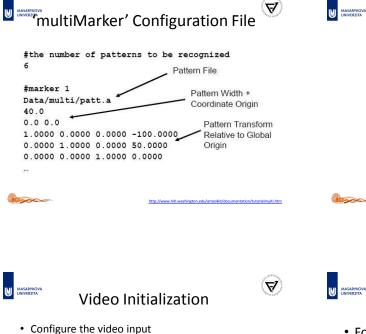

- In each platform you have generally two choices:
 - Click on the program from your OS explorer
 - Starting from the command line
 The last choice is better since it give you the error and standard output stream (and ARToolKit used it a lot)
- Each platform offer a dialog box to setup the video before starting the main AR loop

- A value between 0 and 255
- Default is 100
- Hitting the 'd' key will show the thresholded video image below the main video window
- Possible tracking patterns found in the input image are marked by a red square in the thresholded image
 - Will help you check the effect of lighting and threshold values on the video input


- ARToolKit can give you the position of multiple markers as a function of the camera coordinate system
- Can also have a set of markers that define only one position
 - i.e. Glue to a cardboard plane
- ARToolKit can do that with a specific set of functions based on the multiMarker module

Using Multiple Markers

• Print the pattMulti.pdf



 \forall

• Run multiTest example

 (\mathbf{A})

 \forall

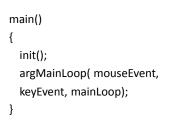
- vconf = <video configuration string>
- Start video capture arVideoCapStart();
- In init(), open the video
 - arVideoOpen(vconf);
 - arVideoInqSize(&xsize, &ysize);
- · When finished, close the video path
 - arVideoCapStop();
 - arVideoClose();

· Set up and clean up the graphics window

void argInit(ARParam *cparam, double zoom, int fullFlag, int xwin, int ywin, int hmd_flag); void argCleanup(void);

- cparam: camera parameter
- zoom: zoom ratio
- fullFlag: 0: normal, 1: full screen mode
- Xwin, ywin: create small window for debug
- hmd_flag: 0: normal, 1: optical see-through mode

Changing Image Size

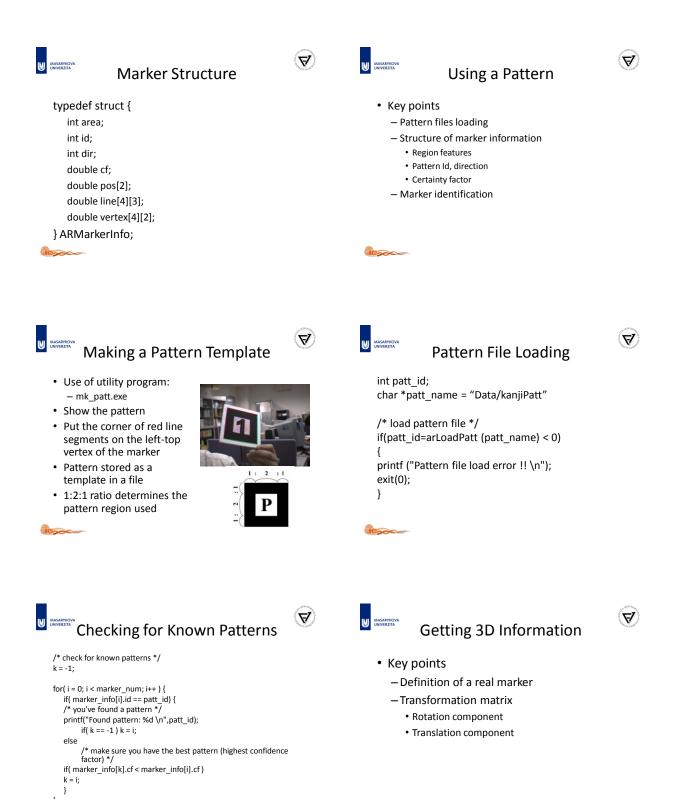

ARToolKit Code

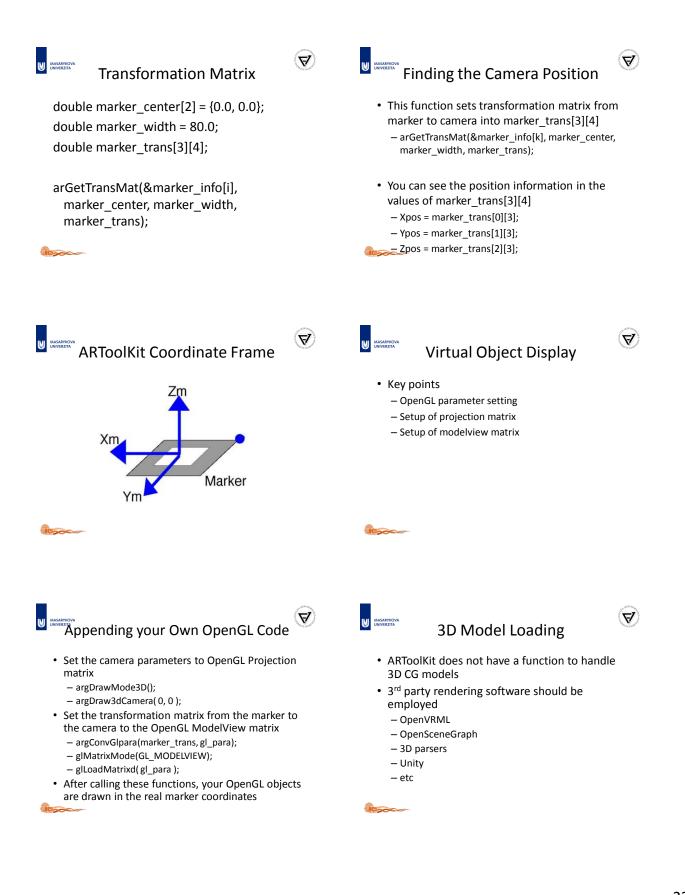
- For input capture
 - -vconf = "videoWidth=320,videoHeight=240";
 - Note the camera must support this image size
- For display
 - -argInit(&cparam, 1.5, 0, 0, 0, 0);
 - · The second parameter means zoom ratio for display image size related to input image

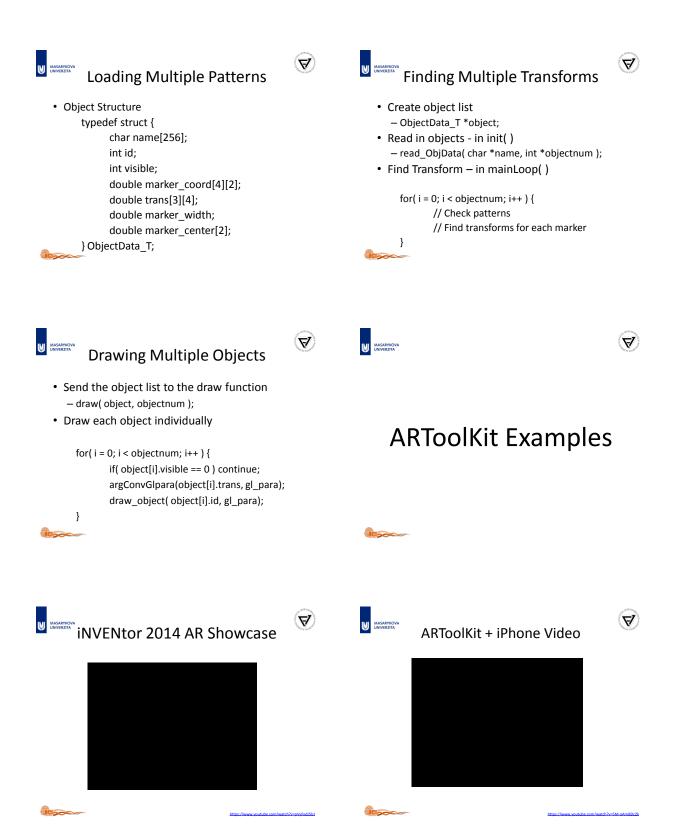
Main Function

 \forall

 \forall


MASARYKOVA UNIVERZITA Graphics handling: libARgsub \forall mainLoop Function · Go into the iterative cycle if(dataPtr = (ARUint8 *) arVideoGetImage()) == NULL) { void argMainLoop(arUtilSleep(2); void (*mouseFunc)(int btn,int state,int x,int y), return; void (*keyFunc)(unsigned char key, int x, int y), } void (*mainFunc)(void) argDrawMode2D();); argDispImage(dataPtr, 0, 0); arVideoCapNext(); Swap buffers argSwapBuffers(); – void argSwapBuffers(void); Graphics handling: libARgsub \mathbf{A} Image capture: libARvideo · Set the window for 2D drawing Return the pointer for captured image ARUint8 *arVideoGetImage(void); - void argDrawMode2D(void); · Pixel format and byte size are defined in Set the window for 3D drawing config.h void argDrawMode3D(void); - #define AR_PIX_FORMAT_BGR void argDraw3dCamera(int xwin, int ywin); - #define AR_PIX_SIZE 3 • Display image - void argDispImage(ARUint8 *image, int xwin, int ywin); ∇ IMI MASARYKOV **Detecting a Marker** Marker Detection /* detect the markers in the video frame */ · Key points: if(arDetectMarker(dataPtr, thresh, - Threshold value &marker_info, &marker_num) < 0) { - Important external variables cleanup(); - arDebug - keep thresholded image


- arImage pointer for thresholded image
- arImageProcMode use 50% image for image processing
 - AR_IMAGE_PROC_IN_FULL
 - · AR IMAGE PROC IN HALF


exit(0); }

for(i = 0; i < marker_num; i++) { argDrawSquare(marker_info[i].vertex,0,0);

}

MASABWOVA UNIVERZITA	ARToolKit + Solar System	Ø	 Conclusions Although a lot of solutions exist, there is no complete solution for all types of AR Depending on the app, specific SDK/solution should be used Expect in the future more 'complete' tools
	https://www.youtube.com	/watch?v=OKcWp7NLVz4	
MASSRENCOVA UNIVERZITA	Questions		Acknowledgements Special Thanks to Prof. Mark Billinghurst